This method paper presents a template solution for text mining of scientific literature using the R tm package. Literature to be analyzed can be collected manually or automatically using the code provided with this paper. Once the literature is collected, the three steps for conducting text mining can be performed as outlined below:• loading and cleaning of text from articles,• processing, statistical analysis, and clustering, and• presentation of results using generalized and tailor-made visualizations.The text mining steps can be applied to a single, multiple, or time series groups of documents.References are provided to three published peer reviewed articles that use the presented text mining methodology. The main advantages of our method are: (1) Its suitability for both research and educational purposes, (2) Compliance with the Findable Accessible Interoperable and Reproducible (FAIR) principles, and (3) code and example data are made available on GitHub under the open-source Apache V2 license.
Visual Thinking (VT) is concerned with the use of visual resources (diagrams, simple drawings, short texts) to represent, organize or communicate ideas or contents. VT aims to favor the understanding of concepts to `translate' to a visual representation a content or process. Lower thinking skills to remember and understand concepts are necessary as much as higher order skills to filter, manage and spatially organize contents. VT offers us a slower, but more effective, way to learn and teachers are increasingly using VT for educational purposes in their lectures. Within the VT techniques, we have set ourselves in the so-called canvas as a template that allows to visually structuring the fundamental elements of an entity or process. As an example of use in the educational field, the PBL canvas proposed by conecta13, describes a Project Based Learning process in nine steps (key competences, learning standards, evaluation method, final product, tasks, resources, ICT tools, grouping and organization and dissemination). On the other hand, we find the need to encourage Science, Technonoloy, Engineering and Mathematics (STEM) vocations, especially in women, given the decreasing interest in these areas (Science, Mathematics, Engineering and Mathematics) considered more arid and boring by students. This makes us to face a paradoxical crossroad, since much of the jobs of the future will be linked to these fields. It is therefore necessary to bring the methodology of scientific thinking closer to the students by presenting it in accessible ways. Here we propose a canvas that provides a visual structure to represent graphically the various steps of the scientific method. These steps include the systematic observation, formulation of hypothesis, design of the experiment to prove or discard them, to finally elaborate some conclusions leading to development of a theory. The canvas is used as a visual tool to support the design to summarize the results of the scientific experiment, to cover the different steps in a schematic way either with text or graphically. An empty template is provided as well as different examples of the canvas covered with experiments that can be carried out in different pre-university educational levels. In order to let this canvas become part of the public domain it is released under the Creative Commons Attribution-Share Alike license, so that anyone can use it, copy or modify by free, with the only condition of attributing the corresponding authorship and keeping the license open.
The present study was aimed at investigating the effects of a video feedback coaching intervention for upper-grade primary school teachers on students’ cognitive gains in scientific knowledge. This teaching intervention was designed with the use of inquiry-based learning principles for teachers, such as the empirical cycle and the posing of thought-provoking questions. The intervention was put into practice in 10 upper-grade classrooms. The trajectory comprised four lessons, complemented with two premeasures and two postmeasures. The control condition consisted of 11 upper-grade teachers and their students. The success of the intervention was tested using an established standardized achievement test and situated measures. In this way, by means of premeasure and postmeasure questionnaires and video data, an assessment could be made of the change in students’ scientific knowledge before, during, and after the intervention. In this study, we primarily focused on the dynamics of students’ real-time expressions of scientific knowledge in the classroom. Important indicators of the effect of the intervention were found. Through focusing on the number of explanations and predictions, a significant increase could be seen in the proportion of students’ utterances displaying scientific understanding in the intervention condition. In addition, students in the intervention condition more often reasoned on higher complexity levels than students in the control condition. No effect was found for students’ scientific knowledge as measured with a standardized achievement test. Implications for future studies are stressed, as well as the importance of enriching the evaluation of intervention studies by focusing on dynamics in the classroom.
Everyone has the right to participate in society to the best of their ability. This right also applies to people with a visual impairment, in combination with a severe or profound intellectual and possibly motor disability (VISPIMD). However, due to their limitations, for their participation these people are often highly dependent on those around them, such as family members andhealthcare professionals. They determine how people with VISPIMD participate and to what extent. To optimize this support, they must have a good understanding of what people with disabilities can still do with their remaining vision.It is currently difficult to gain insight into the visual abilities of people with disabilities, especially those with VISPIMD. As a professional said, "Everything we can think of or develop to assess the functional vision of this vulnerable group will help improve our understanding and thus our ability to support them. Now, we are more or less guessing about what they can see.Moreover, what little we know about their vision is hard to communicate to other professionals”. Therefore, there is a need for methods that can provide insight into the functional vision of people with VISPIMD, in order to predict their options in daily life situations. This is crucial knowledge to ensure that these people can participate in society to their fullest extent.What makes it so difficult to get this insight at the moment? Visual impairments can be caused by a range of eye or brain disorders and can manifest in various ways. While we understand fairly well how low vision affects a person's abilities on relatively simple visual tasks, it is much more difficult to predict this in more complex dynamic everyday situations such asfinding your way or moving around during daily activities. This is because, among other things, conventional ophthalmic tests provide little information about what people can do with their remaining vision in everyday life (i.e., their functional vision).An additional problem in assessing vision in people with intellectual disabilities is that many conventional tests are difficult to perform or are too fatiguing, resulting in either no or the wrong information. In addition to their visual impairment, there is also a very serious intellectual disability (possibly combined with a motor impairment), which makes it even more complex to assesstheir functional vision. Due to the interplay between their visual, intellectual, and motor disabilities, it is almost impossible to determine whether persons are unable to perform an activity because they do not see it, do not notice it, do not understand it, cannot communicate about it, or are not able to move their head towards the stimulus due to motor disabilities.Although an expert professional can make a reasonable estimate of the functional possibilities through long-term and careful observation, the time and correct measurement data are usually lacking to find out the required information. So far, it is insufficiently clear what people with VZEVMB provoke to see and what they see exactly.Our goal with this project is to improve the understanding of the visual capabilities of people with VISPIMD. This then makes it possible to also improve the support for participation of the target group. We want to achieve this goal by developing and, in pilot form, testing a new combination of measurement and analysis methods - primarily based on eye movement registration -to determine the functional vision of people with VISPIMD. Our goal is to systematically determine what someone is responding to (“what”), where it may be (“where”), and how much time that response will take (“when”). When developing methods, we take the possibilities and preferences of the person in question as a starting point in relation to the technological possibilities.Because existing technological methods were originally developed for a different purpose, this partly requires adaptation to the possibilities of the target group.The concrete end product of our pilot will be a manual with an overview of available technological methods (as well as the methods themselves) for assessing functional vision, linked to the specific characteristics of the target group in the cognitive, motor area: 'Given that a client has this (estimated) combination of limitations (cognitive, motor and attention, time in whichsomeone can concentrate), the order of assessments is as follows:' followed by a description of the methods. We will also report on our findings in a workshop for professionals, a Dutch-language article and at least two scientific articles. This project is executed in the line: “I am seen; with all my strengths and limitations”. During the project, we closely collaborate with relevant stakeholders, i.e. the professionals with specific expertise working with the target group, family members of the persons with VISPIMD, and persons experiencing a visual impairment (‘experience experts’).
The Dutch main water systems face pressing environmental, economic and societal challenges due to climatic changes and increased human pressure. There is a growing awareness that nature-based solutions (NBS) provide cost-effective solutions that simultaneously provide environmental, social and economic benefits and help building resilience. In spite of being carefully designed and tested, many projects tend to fail along the way or never get implemented in the first place, wasting resources and undermining trust and confidence of practitioners in NBS. Why do so many projects lose momentum even after a proof of concept is delivered? Usually, failure can be attributed to a combination of eroding political will, societal opposition and economic uncertainties. While ecological and geological processes are often well understood, there is almost no understanding around societal and economic processes related to NBS. Therefore, there is an urgent need to carefully evaluate the societal, economic, and ecological impacts and to identify design principles fostering societal support and economic viability of NBS. We address these critical knowledge gaps in this research proposal, using the largest river restoration project of the Netherlands, the Border Meuse (Grensmaas), as a Living Lab. With a transdisciplinary consortium, stakeholders have a key role a recipient and provider of information, where the broader public is involved through citizen science. Our research is scientifically innovative by using mixed methods, combining novel qualitative methods (e.g. continuous participatory narrative inquiry) and quantitative methods (e.g. economic choice experiments to elicit tradeoffs and risk preferences, agent-based modeling). The ultimate aim is to create an integral learning environment (workbench) as a decision support tool for NBS. The workbench gathers data, prepares and verifies data sets, to help stakeholders (companies, government agencies, NGOs) to quantify impacts and visualize tradeoffs of decisions regarding NBS.
‘Dieren in de dijk’ aims to address the issue of animal burrows in earthen levees, which compromise the integrity of flood protection systems in low-lying areas. Earthen levees attract animals that dig tunnels and cause damages, yet there is limited scientific knowledge on the extent of the problem and effective approaches to mitigate the risk. Recent experimental research has demonstrated the severe impact of animal burrows on levee safety, raising concerns among levee management authorities. The consortium's ambition is to provide levee managers with validated action perspectives for managing animal burrows, transitioning from a reactive to a proactive risk-based management approach. The objectives of the project include improving failure probability estimation in levee sections with animal burrows and enhancing risk mitigation capacity. This involves understanding animal behavior and failure processes, reviewing existing and testing new deterrence, detection, and monitoring approaches, and offering action perspectives for levee managers. Results will be integrated into an open-access wiki-platform for guidance of professionals and in education of the next generation. The project's methodology involves focus groups to review the state-of-the-art and set the scene for subsequent steps, fact-finding fieldwork to develop and evaluate risk reduction measures, modeling failure processes, and processing diverse quantitative and qualitative data. Progress workshops and collaboration with stakeholders will ensure relevant and supported solutions. By addressing the knowledge gaps and providing practical guidance, the project aims to enable levee managers to effectively manage animal burrows in levees, both during routine maintenance and high-water emergencies. With the increasing frequency of high river discharges and storm surges due to climate change, early detection and repair of animal burrows become even more crucial. The project's outcomes will contribute to a long-term vision of proactive risk-based management for levees, safeguarding the Netherlands and Belgium against flood risks.