Crime script analysis as a methodology to analyse criminal processes is underdeveloped. This is apparent from the various approaches in which scholars apply crime scripting and present their cybercrime scripts. The plethora of scripting methods raise significant concerns about the reliability and validity of these scripting studies. In this methodological paper, we demonstrate how object-oriented modelling (OOM) could address some of the currently identified methodological issues, thereby refining crime script analysis. More specifically, we suggest to visualise crime scripts using static and dynamic modelling with the Unified Modelling Language (UML) to harmonise cybercrime scripts without compromising their depth. Static models visualise objects in a system or process, their attributes and their relationships. Dynamic models visualise actions and interactions during a process. Creating these models in addition to the typical textual narrative could aid analysts to more systematically consider, organise and relate key aspects of crime scripts. In turn, this approach might, amongst others, facilitate alternative ways of identifying intervention measures, theorising about offender decision-making, and an improved shared understanding of the crime phenomenon analysed. We illustrate the application of these models with a phishing script.
MULTIFILE
Game development businesses often choose Lua for separating scripted game logic from reusable engine code. Lua can easily be embedded, has simple interfaces, and offers a powerful and extensible scripting language. Using Lua, developers can create prototypes and scripts at early development stages. However, when larger quantities of engine code and script are available, developers encounter maintainability and quality problems. First, the available automated solutions for interoperability do not take domain-specific optimizations into account. Maintaining a coupling by hand between the Lua interpreter and the engine code, usually in C++, is labour intensive and error-prone. Second, assessing the quality of Lua scripts is hard due to a lack of tools that support static analysis. Lua scripts for dynamic analysis only report warnings and errors at run-time and are limited to code coverage. A common solution to the first problem is developing an Interface Definition Language (IDL) from which ”glue code”, interoperability code between interfaces, is generated automatically. We address quality problems by proposing a method to complement techniques for Lua analysis. We introduce Lua AiR (Lua Analysis in Rascal), a framework for static analysis of Lua script in its embedded context, using IDL models and Rascal.
DOCUMENT
AimsTo explore the possible extension of the illness script theory used in medicine to the nursing context.DesignA qualitative interview study.MethodsThe study was conducted between September 2019 and March 2020. Expert nurses were asked to think aloud about 20 patient problems in nursing. A directed content analysis approach including quantitative data processing was used to analyse the transcribed data.ResultsThrough the analysis of 3912 statements, scripts were identified and a nursing script model is proposed; the medical illness script, including enabling conditions, fault and consequences, is extended with management, boundary, impact, occurrence and explicative statements. Nurses often used explicative statements when pathophysiological causes are absent or unknown. To explore the applicability of Illness script theory we analysed scripts’ richness and maturity with descriptive statistics. Expert nurses, like medical experts, had rich knowledge of consequences, explicative statements and management of familiar patient problems.ConclusionThe knowledge of expert nurses about patient problems can be described in scripts; the components of medical illness scripts are also relevant in nursing. We propose to extend the original illness script concept with management, explicative statements, boundary, impact and occurrence, to enlarge the applicability of illness scripts in the nursing domain.ImpactIllness scripts guide clinical reasoning in patient care. Insights into illness scripts of nursing experts is a necessary first step to develop goals or guidelines for student nurses’ development of clinical reasoning. It might lay the groundwork for future educational strategies.
DOCUMENT
Developing a framework that integrates Advanced Language Models into the qualitative research process.Qualitative research, vital for understanding complex phenomena, is often limited by labour-intensive data collection, transcription, and analysis processes. This hinders scalability, accessibility, and efficiency in both academic and industry contexts. As a result, insights are often delayed or incomplete, impacting decision-making, policy development, and innovation. The lack of tools to enhance accuracy and reduce human error exacerbates these challenges, particularly for projects requiring large datasets or quick iterations. Addressing these inefficiencies through AI-driven solutions like AIDA can empower researchers, enhance outcomes, and make qualitative research more inclusive, impactful, and efficient.The AIDA project enhances qualitative research by integrating AI technologies to streamline transcription, coding, and analysis processes. This innovation enables researchers to analyse larger datasets with greater efficiency and accuracy, providing faster and more comprehensive insights. By reducing manual effort and human error, AIDA empowers organisations to make informed decisions and implement evidence-based policies more effectively. Its scalability supports diverse societal and industry applications, from healthcare to market research, fostering innovation and addressing complex challenges. Ultimately, AIDA contributes to improving research quality, accessibility, and societal relevance, driving advancements across multiple sectors.
Everyone has the right to participate in society to the best of their ability. This right also applies to people with a visual impairment, in combination with a severe or profound intellectual and possibly motor disability (VISPIMD). However, due to their limitations, for their participation these people are often highly dependent on those around them, such as family members andhealthcare professionals. They determine how people with VISPIMD participate and to what extent. To optimize this support, they must have a good understanding of what people with disabilities can still do with their remaining vision.It is currently difficult to gain insight into the visual abilities of people with disabilities, especially those with VISPIMD. As a professional said, "Everything we can think of or develop to assess the functional vision of this vulnerable group will help improve our understanding and thus our ability to support them. Now, we are more or less guessing about what they can see.Moreover, what little we know about their vision is hard to communicate to other professionals”. Therefore, there is a need for methods that can provide insight into the functional vision of people with VISPIMD, in order to predict their options in daily life situations. This is crucial knowledge to ensure that these people can participate in society to their fullest extent.What makes it so difficult to get this insight at the moment? Visual impairments can be caused by a range of eye or brain disorders and can manifest in various ways. While we understand fairly well how low vision affects a person's abilities on relatively simple visual tasks, it is much more difficult to predict this in more complex dynamic everyday situations such asfinding your way or moving around during daily activities. This is because, among other things, conventional ophthalmic tests provide little information about what people can do with their remaining vision in everyday life (i.e., their functional vision).An additional problem in assessing vision in people with intellectual disabilities is that many conventional tests are difficult to perform or are too fatiguing, resulting in either no or the wrong information. In addition to their visual impairment, there is also a very serious intellectual disability (possibly combined with a motor impairment), which makes it even more complex to assesstheir functional vision. Due to the interplay between their visual, intellectual, and motor disabilities, it is almost impossible to determine whether persons are unable to perform an activity because they do not see it, do not notice it, do not understand it, cannot communicate about it, or are not able to move their head towards the stimulus due to motor disabilities.Although an expert professional can make a reasonable estimate of the functional possibilities through long-term and careful observation, the time and correct measurement data are usually lacking to find out the required information. So far, it is insufficiently clear what people with VZEVMB provoke to see and what they see exactly.Our goal with this project is to improve the understanding of the visual capabilities of people with VISPIMD. This then makes it possible to also improve the support for participation of the target group. We want to achieve this goal by developing and, in pilot form, testing a new combination of measurement and analysis methods - primarily based on eye movement registration -to determine the functional vision of people with VISPIMD. Our goal is to systematically determine what someone is responding to (“what”), where it may be (“where”), and how much time that response will take (“when”). When developing methods, we take the possibilities and preferences of the person in question as a starting point in relation to the technological possibilities.Because existing technological methods were originally developed for a different purpose, this partly requires adaptation to the possibilities of the target group.The concrete end product of our pilot will be a manual with an overview of available technological methods (as well as the methods themselves) for assessing functional vision, linked to the specific characteristics of the target group in the cognitive, motor area: 'Given that a client has this (estimated) combination of limitations (cognitive, motor and attention, time in whichsomeone can concentrate), the order of assessments is as follows:' followed by a description of the methods. We will also report on our findings in a workshop for professionals, a Dutch-language article and at least two scientific articles. This project is executed in the line: “I am seen; with all my strengths and limitations”. During the project, we closely collaborate with relevant stakeholders, i.e. the professionals with specific expertise working with the target group, family members of the persons with VISPIMD, and persons experiencing a visual impairment (‘experience experts’).
Community, lab, werkplaats, netwerk, systeem, multi-stakeholder leeromgeving, leerwerkplaats, hybride leeromgeving: de termen buitelen over elkaar heen. Het gaat om omgevingen waarbij betrokkenen vanuit verschillende werelden met elkaar samen werken, leren en innoveren over grenzen heen, vaak rondom een maatschappelijke opgave. Bij de HU is gekozen voor de term ‘rijke leeromgevingen’. Vanwege het samen werken, leren en innoveren over grenzen heen, vinden wij ‘grensoverstijgende leeromgevingen’ een passend concept.