BACKGROUND: Combining increased dietary protein intake and resistance exercise training for elderly people is a promising strategy to prevent or counteract the loss of muscle mass and decrease the risk of disabilities. Using findings from controlled interventions in a real-life setting requires adaptations to the intervention and working procedures of healthcare professionals (HCPs). The aim of this study is to adapt an efficacious intervention for elderly people to a real-life setting (phase one) and test the feasibility and potential impact of this prototype intervention in practice in a pilot study (phase two).METHODS: The Intervention Mapping approach was used to guide the adaptation in phase one. Qualitative data were collected from the original researchers, target group, and HCPs, and information was used to decide whether and how specified intervention elements needed to be adapted. In phase two, a one-group pre-test post-test pilot study was conducted (n = 25 community-dwelling elderly), to elicit further improvements to the prototype intervention. The evaluation included participant questionnaires and measurements at baseline (T0) and follow-up (T1), registration forms, interviews, and focus group discussions (T1). Qualitative data for both phases were analysed using an inductive approach. Outcome measures included physical functioning, strength, body composition, and dietary intake. Change in outcomes was assessed using Wilcoxon signed-rank tests.RESULTS: The most important adaptations to the original intervention were the design of HCP training and extending the original protein supplementation with a broader nutrition programme aimed at increasing protein intake, facilitated by a dietician. Although the prototype intervention was appreciated by participants and professionals, and perceived applicable for implementation, the pilot study process evaluation resulted in further adaptations, mostly concerning recruitment, training session guidance, and the nutrition programme. Pilot study outcome measures showed significant improvements in muscle strength and functioning, but no change in lean body mass.CONCLUSION: The combined nutrition and exercise intervention was successfully adapted to the real-life setting and seems to have included the most important effective intervention elements. After adaptation of the intervention using insights from the pilot study, a larger, controlled trial should be conducted to assess cost-effectiveness.TRIAL REGISTRATION: Trial registration number: ClinicalTrials.gov NL51834.081.14 (April 22, 2015).
The application of DC grids is gaining more attention in office applications. Especially since powering an office desk would not require a high power connection to the main AC grid but could be made sustainable using solar power and battery storage. This would result in fewer converters and further advanced grid utilization. In this paper, a sustainable desk power application is described that can be used for powering typical office appliances such as computers, lighting, and telephones. The desk will be powered by a solar panel and has a battery for energy storage. The applied DC grid includes droop control for power management and can either operate stand-alone or connected to other DC-desks to create a meshed-grid system. A dynamic DC nano-grid is made using multiple self-developed half-bridge circuit boards controlled by microcontrollers. This grid is monitored and controlled using a lightweight network protocol, allowing for online integration. Droop control is used to create dynamic power management, allowing automated control for power consumption and production. Digital control is used to regulate the power flow, and drive other applications, including batteries and solar panels. The practical demonstrative setup is a small-sized desktop with applications built into it, such as a lamp, wireless charging pad, and laptop charge point for devices up to 45W. User control is added in the form of an interactive remote wireless touch panel and power consumption is monitored and stored in the cloud. The paper includes a description of technical implementation as well as power consumption measurements.
Background: The built environment is increasingly recognized as a determinant for health and health behaviors. Existing evidence regarding the relationship between environment and health (behaviors) is varying in significance and magnitude, and more high-quality longitudinal studies are needed. The aim of this study was to evaluate the effects of a major urban redesign project on physical activity (PA), sedentary behavior (SB), active transport (AT), health-related quality of life (HRQOL), social activities (SA) and meaningfulness, at 29–39 months after opening of the reconstructed area. Methods: PA and AT were measured using accelerometers and GPS loggers. HRQOL and sociodemographic characteristics were assessed using questionnaires. In total, 241 participants provided valid data at baseline and follow-up. We distinguished three groups, based on proximity to the intervention area: maximal exposure group, minimal exposure group and no exposure group. Results: Both the maximal and minimal exposure groups showed significantly different trends regarding transportbased PA levels compared to the no exposure group. In the exposure groups SB decreased, while it increased in the no exposure group. Also, transport-based light intensity PA remained stable in the exposure groups, while it significantly decreased in the no exposure group. No intervention effects were found for total daily PA levels. Scores on SA and meaningfulness increased in the maximal exposure group and decreased in the minimal and no exposure group, but changes were not statistically significant. Conclusion: The results of this study emphasize the potential of the built environment in changing SB and highlights the relevance of longer-term follow-up measurements to explore the full potential of urban redesign projects.
In de komende decennia zullen batterijen (vooral Li-ion) veelvuldig ingezet worden voor de opslag van elektrische energie. De belangrijkste toepassing zal die in elektrische voertuigen zijn. Batterijen verouderen en daarom is het van belang om de gezondheidstoestand van een batterij te kunnen schatten. Met deze schatting wordt bepaald of deze batterij in de eerste toepassing bruikbaar blijft of dat deze beter geschikt is om in een second-life toepassing geplaatst te worden. Uiteindelijk zullen de batterijen gerecycled worden. Tijdens gesprekken met bedrijven, waarvan de meeste in het consortium deelnemen, werd het duidelijk dat er veel praktijkvragen zijn rondom batterijen en hun hergebruik. In het bijzonder is er nood aan praktisch inzetbare methoden om de gezondheidstoestand en restlevensduur van gebruikte batterijen te bepalen. Uitgangspunt is om hiervoor rekenmodellen in te zetten. Bestaande modellen zullen doorontwikkeld worden zodat ze de gezondheidstoestand van batterijpakketten kunnen inschatten. Voor de validatie van deze modelen zijn geschikte meetdata nodig. Hiervoor wordt een (nieuwe) meetopstelling gebouwd die mogelijk de basis kan worden van een merk-onafhankelijke batterijtest. Tegelijkertijd worden methoden vastgelegd voor validatie met meetdata uit het veld. Ook de vraag hoe een batterijpakket, op een veilige manier, gerepareerd kan worden is onderdeel van het project. Eenmaal de gezondheidstoestand van een batterij bepaald is, is de vervolg vraag hoe de restlevensduur van ervan bepaald kan worden aan de hand van de soort data die beschikbaar zijn. Deze restlevensduur is verder afhankelijk van de typische inzet in de second-life toepassing. Het vaststellen en bepalen van de bepalende kenmerken van deze inzet is eveneens onderdeel van het onderzoek. Tot slot wordt de economische haalbaarheid bepaald om het gebruik van batterijen te verlengen in eerste of second-life toepassingen. De uitkomsten van dit onderzoek zullen bijdrage om de consortiumleden inzicht te geven in de gebruiksmogelijkheden van batterijen in de verschillende duurzame toepassingen.