The seismic performance of a two-story 2D frame and a five-story 3D frame–shear-wall structure founded on spread (isolated) footings is investigated. In addition to footings conventionally designed in accordance with “capacity-design” principles, substantially under-designed footings are also used. Such unconventional (“rocking”) footings may undergo severe cyclic uplifting while inducing large plastic deformations in the supporting soil during seismic shaking. It is shown that thanks to precisely such behaviour they help the structure survive with little damage, while experiencing controllable foundation deformations in the event of a really catastrophic seismic excitation. Potential exceptions are also mentioned along with methods of improvement.
LINK
Mild steel is relatively low-cost and easily accessible material to fabricate some structural members. It would be a significant advantage if seismic energy dissipaters that are used in structures constructed in the earthquake prone areas, could also be produced on site. In this paper, a promising seismic energy dissipater made of mild steel, so-called steel cushion (SC) is presented. It is provided experimental and analytical responses of SCs subjected to bi-axial loadings. SC rolls under the lateral loading that allows relocation of the plasticized cross-section. Henceforth, SC dissipates considerable amount of seismic energy. A series of tests were performed to achieve experimentally the behavior of SC subjected to longitudinal and transversal loading. Finite Element Models (FEMs) were also generated to reproduce the experimental backbone curves and to predict the bi-directional response properties for discrete transversal forces and plate thicknesses. Closed-form equations were derived to determine yield and ultimate forces and the corresponding displacements as well as location of the plasticized sections. The behavior of SC could either be projected by the FEMs with the exhibited parameters or by means of the proposed closed-form equations and the normalized design chart.
LINK
This paper investigates the limits and efficacies of the Fiber Reinforced Polymer (FRP) material for strengthening mid-rise RC buildings against seismic actions. Turkey, the region of the highest seismic risk in Europe, is chosen as the case-study country, the building stock of which consists in its vast majority of mid-rise RC residential and/or commercial buildings. Strengthening with traditional methods is usually applied in most projects, as ordinary construction materials and no specialized workmanship are required. However, in cases of tight time constraints, architectural limitations, durability issues or higher demand for ductile performance, FRP material is often opted for since the most recent Turkish Earthquake Code allows engineers to employ this advanced-technology product to overcome issues of inadequate ductility or shear capacity of existing RC buildings. The paper compares strengthening of a characteristically typical mid-rise Turkish RC building by two methods, i.e., traditional column jacketing and FRP strengthening, evaluating their effectiveness with respect to the requirements of the Turkish Earthquake Code. The effect of FRP confinement is explicitly taken into account in the numerical model, unlike the common procedure followed according to which the demand on un-strengthened members is established and then mere section analyses are employed to meet the additional demands.
In recent years, human-induced seismicity in the northern part of the Netherlands increased rendering the seismic response of unreinforced masonry (URM) structures critical. Majority of the existing buildings in the Netherlands are URM, which are not designed to withstand earthquakes. This issue motivates engineering and construction companies in the region to research on the seismic assessment of the existing structures.The companies working in the structural engineering field in the region were forced to adapt very quickly to the earthquake related problems, such as strengthening of existing buildings after earthquake. Such solutions are of prime importance for the Groningen region due to the extent of the earthquake problems and need for strengthening the houses. The research published in the literature show that the connections play an important role in seismic resistant of the houses. Fixing or improving the poor wall-to-wall or floor-to-wall connections may have a large positive impact on the overall seismic behaviour. Some strengthening solutions are already provided by SMEs, and an extensive experimental campaign was carried out at TU Delft on retrofitted connections. In this project, a new experiment will be run on a large shake-table, unique in the Netherlands, that can simulate earthquake vibrations. These tests, together with the previous experience, will complement the overall knowledge on the strengthening solutions and their performance under real-time actual earthquake vibrations.
In recent years, human-induced seismicity in the northern part of the Netherlands increased rendering the seismic response of unreinforced masonry (URM) structures critical. Majority of the existing buildings in the Netherlands are URM, which are not designed to withstand earthquakes. This issue motivates engineering and construction companies in the region to research on the seismic assessment of the existing structures. The companies working in the structural engineering field in the region were forced to adapt very quickly to the earthquake related problems, such as strengthening of existing buildings after earthquake. Such solutions are of prime importance for the Groningen region due to the extent of the earthquake problems and need for strengthening the houses. The research published in the literature show that the connections play an important role in seismic resistant of the houses. Fixing or improving the poor wall-to-wall or floor-to-wall connections may have a large positive impact on the overall seismic behaviour. Some strengthening solutions are already provided by SMEs, and an extensive experimental campaign was carried out at TU Delft on retrofitted connections. In this project, a new experiment will be run on a large shake-table, unique in the Netherlands, that can simulate earthquake vibrations. These tests, together with the previous experience, will complement the overall knowledge on the strengthening solutions and their performance under real-time actual earthquake vibrations.