Kahramanmaraş Earthquake Sequence of 6th of February is the deadliest earthquake that happened in Turkey in the era of instrumental seismology, claiming more than 55 thousand lives and leaving torn down cities and towns behind. More than 450 km long lateral strike-slip fault ruptured during these catastrophic earthquakes. As a result, more than 38 thousand buildings collapsed causing life losses. Considering that the large share of the Turkish building stock consists of RC buildings, the vulnerable RC building stock is the main responsible for this picture. Deficiencies of the Turkish RC building stock are well known since they manifested themselves several times in the past earthquakes. However, considering the improvements in the seismic codes and the seismic hazard maps achieved in the last two decades, the widespread collapse of buildings constructed after year 2000 was rather unexpected. Some of the observed structural damage patterns are similar to those observed also in the pre-2000 buildings in recent earthquakes, however, some other types of damages, such as out-of-plane bending and shear failures or shear-friction capacity failure of RC walls, brittle fracture and bond-slip failure of reinforcement, tension failure of beams and slabs are usually not witnessed. This paper presents a carefully selected set of examples comparing the pre-2000 and post-2000 building damages and collapses, also referring to a detailed summary and comparison of the code developments in Turkey.
DOCUMENT
''This research aims to address a post-earthquake urgent strengthening measure to enhance the residual seismic capacity of earthquake-damaged reinforced concrete wall structures with coupling beams. The study consists of a series of tests on half-scale prototype coupling beams with various detailing options, including confined with reduced confinement, partially confined, and unconfined bundles, under cyclic loading conditions. The methodology employed involved subjecting the specimens to displacement-controlled reversal tests, and carefully monitoring their response using strain gauges and potentiometers. The main results obtained reveal that GFRP wrapping significantly enhances the seismic performance of earthquake-damaged coupling beams, even in cases where specimens experienced strength loss and main reinforcement rupture. The strengthened beams exhibit commendable ductility, maintaining high levels of deformation capacity, and satisfying the requirements of relevant seismic design codes. The significance of the study lies in providing valuable insights into the behavior and performance of damaged coupling beams and assessing the effectiveness of GFRP wrapping as a rapid and practical post-earthquake strengthening technique. The findings can be particularly useful for developing urgent post-earthquake strengthening strategies for high-rise buildings with structural walls. The method may be particularly useful for mitigating potential further damage in aftershocks and eventual collapse. In conclusion, this study represents a significant advancement in understanding the post-earthquake behaviors of coupling beams and provides valuable guidance for practitioners in making informed decisions regarding post-earthquake strengthening projects. The findings contribute to the overall safety and resilience of structures in earthquake-prone regions.''
DOCUMENT
This paper investigates the limits and efficacies of the Fiber Reinforced Polymer (FRP) material for strengthening mid-rise RC buildings against seismic actions. Turkey, the region of the highest seismic risk in Europe, is chosen as the case-study country, the building stock of which consists in its vast majority of mid-rise RC residential and/or commercial buildings. Strengthening with traditional methods is usually applied in most projects, as ordinary construction materials and no specialized workmanship are required. However, in cases of tight time constraints, architectural limitations, durability issues or higher demand for ductile performance, FRP material is often opted for since the most recent Turkish Earthquake Code allows engineers to employ this advanced-technology product to overcome issues of inadequate ductility or shear capacity of existing RC buildings. The paper compares strengthening of a characteristically typical mid-rise Turkish RC building by two methods, i.e., traditional column jacketing and FRP strengthening, evaluating their effectiveness with respect to the requirements of the Turkish Earthquake Code. The effect of FRP confinement is explicitly taken into account in the numerical model, unlike the common procedure followed according to which the demand on un-strengthened members is established and then mere section analyses are employed to meet the additional demands.
DOCUMENT
Masonry structures comprise a significant portion of the historical building stock all over the world. Previousstudies have clearly pointed out that unreinforced masonry buildings are vulnerable against extreme loadingconditions, such as seismic actions. Therefore, strengthening is inevitable in most cases for historical masonry towithstand severe loads. In this paper, the efficiency of fabric reinforced cementitious matrix is investigatedexperimentally by using diagonal tension tests. Fourteen wallets with a nominal size of 750x750x235 mm wereproduced with using solid clay bricks and a low-strength mortar. The bricks were collected from the structuralwalls of an early-20th century building under restoration. The low-strength mortar represents the historicalmortar commonly used in similar historical brick masonry buildings located in Istanbul, Turkey. By testing thespecimens under monotonic diagonal compression loads, the effects of different types of plasters on the walletsurface, varying types of fibers used in textile reinforcement and anchors used for the connection between FRCMand substrate are investigated. Although the wallet samples have inherent shortcomings in representing overallcomponent response accurately, still the qualitative findings are enlightening the effectiveness of the FRCMsystem by increasing shear strength, stiffness (shear modulus) and dissipated energy of the masonry wallets. Thestrengthened specimens were failed due to shear sliding along a bed joint and/or by a stair-shaped separationwhile the refence specimens were failed due to the splitting of the specimen into two parts in the stair-steppedshape and a slipping through a bed joint.
LINK
DOCUMENT
Existing unreinforced masonry buildings in seismically active regions are in urgent need of consolidation and preservation against seismic action to prevent damage and loss of financial resources. In this research, an experimental study of externally confined brick masonry piers, which are frequently preferred as load-bearing elements in historical buildings, was conducted. The confinement system included a combination of open-grid basalt textile and mortar. Eighteen masonry pier specimens were produced using solid bricks collected from a historical building constructed in approximately the 1930s and a local mortar with substandard mechanical characteristics to simulate mortar properties in existing heritage buildings. All the square/rectangular pier specimens were tested under concentric compressive loads. In general, confinement of the tested textile-reinforced mortar (TRM) improved the energy dissipation of the masonry piers significantly. A comparison was made between the experimental results and theoretical predictions using the available analytical models. The compressive strengths predicted by the models are satisfactory.
LINK
Two strong earthquakes hit Thessaly region on March 3rd, 2021 (Mw = 6.3) and on March 4th, 2021 (Mw = 6.1). The epicentres of the earthquakes were located at approximately 23 and 29 km respectively NW of Larissa, one of the most populous cities in Greece. Several aftershocks followed thereafter. Although no injuries were recorded, several structures suffered significant damage close to the epicentre, while some others collapsed. Approximately 300 residents of the village of Damasi were transferred to temporary settlements and tents. The event occurred during the COVID19 lockdown and created significant stress and disruption to residents. This paper focuses on the earthquake swarm itself as well as the damages observed in residential buildings, schools, and churches in the earthquake-stricken region. The earthquakes mainly impacted low-rise domestic masonry buildings, while the more modern reinforced concrete structures built following the recent seismic regulations were almost unaffected. The typology of buildings in the region, together with photographs demonstrating the extent of damage are presented herein. Despite the rather satisfactory performance of modern buildings in recent earthquakes in Greece, the preliminary investigations from the Thessaly Earthquakes showed that there is still a significant level of vulnerability in existing masonry building stock constructed using traditional methods and materials. This issue could re-emerge in future earthquakes striking other rural areas of Greece, something that needs to be addressed systematically in the future.
DOCUMENT
Assessment of the seismic vulnerability of the building stock in the earthquake-prone Marmara region of Turkey is of growing importance since such information is needed for reliable estimation of the losses that possible future earthquakes are likely to induce. The outcome of such loss assessment exercises can be used in planning of urban/regional-scale earthquake protection strategies; this is a priority in Turkey, particularly following the destructive earthquakes of 1999. Considering the size of the building inventory, Istanbul and its surrounding area is a case for which it is not easy to determine the structural properties and characteristics of the building stock. In this paper, geometrical, functional and material properties of the building stock in the northern Marmara Region, particularly around Istanbul, have been investigated and evaluated for use in loss estimation models and other types of statistic- or probability-based studies. In order to do that, the existing reinforced concrete (RC) stock has been classified as 'compliant' or 'non-compliant' buildings, dual (frame-wall) or frame structures and emergent or embedded-beam systems. In addition to the statistical parameters such as mean values, standard deviations, etc., probability density functions and their goodness-of-fit have also been investigated for all types of parameters. Functionalities such as purpose of use and floor area properties have been defined. Concrete properties of existing and recently constructed buildings and also characteristics of 220 and 420 MPa types of steel have been documented. Finally, the financial effects of retrofitting operations and damage repair have been investigated. © 2007 Elsevier Ltd. All rights reserved.
MULTIFILE
Citizen participation in local renewable energy projects is often promoted as many suppose it to be a panacea for the difficulties that are involved in the energy transition process. Quite evidently, it is not; there is a wide variety of visions, ideologies and interests related to an ‘energy transition’. Such a variety is actually a precondition for a stakeholder participation process, as stakeholder participation only makes sense if there is ‘something at stake’. Conflicting viewpoints, interests and debates are the essence of participation. The success of stakeholder participation implies that these differences are acknowledged, and discussed, and that this has created mutual understanding among stakeholders. It does not necessarily create ‘acceptance’. Renewable energy projects often give rise to local conflict. The successful implementation of local renewable energy systems depends on the support of the local social fabric. While at one hand decisions to construct wind turbines in specific regions trigger local resistance, the opposite also occurs! Solar parks sometimes create a similar variation: Various communities try to prevent the construction of solar parks in their vicinity, while other communities proudly present their parks. Altogether, local renewable energy initiatives create a rather chaotic picture, if regarded from the perspective of government planning. However, if we regard the successes, it appears the top down initiatives are most successful in areas with a weak social fabric, like industrial areas, or rather recently reclaimed land. Deeply rooted communities, virtually only have successful renewable energy projects that are more or less bottom up initiatives. This paper will first sketch why participation is important, and present a categorisation of processes and procedures that could be applied. It also sketches a number of myths and paradoxes that might occur in participation processes. ‘Compensating’ individuals and/or communities to accept wind turbines or solar parks is not sufficient to gain ‘acceptance’. A basic feature of many debates on local renewable energy projects is about ‘fairness’. The implication is that decision-making is neither on pros and cons of various renewable energy technologies as such, nor on what citizens are obliged to accept, but on a fair distribution of costs and benefits. Such discussions on fairness cannot be short cut by referring to legal rules, scientific evidence, or to standard financial compensations. History plays a role as old feelings of being disadvantaged, both at individual and at group level, might re-emerge in such debates. The paper will provide an overview of various local controversies on renewable energy initiatives in the Netherlands. It will argue that an open citizen participation process can be organized to work towards fair decisions, and that citizens should not be addressed as greedy subjects, trying to optimise their own private interests, but as responsible persons.
DOCUMENT