Few studies have investigated staying intentions and house attachment of residents who are confronted with physical damage to their dwelling in a risk area. This paper examines whether and how homeowners who are confronted with human-induced risks and the consequences of gas extraction in the Dutch Groningen rural earthquake region are attached to their damaged dwellings and why they stay. A content analysis was performed on 92 published interviews with homeowners of damaged dwellings. Additionally, three semi-structured interviews were held with key journalists and a homeowner. The results show that the homeowners’ staying intentions are interrelated with their house attachment; moreover, their awareness of their house attachment arises precisely because of the damage. We identify five subdimensions of physical and social house attachment, related to family history, heritage, (agricultural) business, personal refurbishment, and cohabiting family members, which make homeowners want to stay. The family history is especially mentioned by mid-to-later life homeowners, while some younger homeowners emphasize social house attachment to their children.We conclude that a homeowner's decision to stay in a damaged dwelling is a continuous cycle of reconsideration and renegotiation, punctuated by potential new risks and damages influencing the house attachment and staying intentions. Based on the found dimensions of house attachment, policymakers in risk areas could apply different approaches to homeowners in case of damage repair, rebuilding, or relocation plans, as homeowners - even those with damaged dwellings - may prefer to stay.
Since 1990, natural hazards have led to over 1.6 million fatalities globally, and economic losses are estimated at an average of around USD 260–310 billion per year. The scientific and policy communities recognise the need to reduce these risks. As a result, the last decade has seen a rapid development of global models for assessing risk from natural hazards at the global scale. In this paper, we review the scientific literature on natural hazard risk assessments at the global scale, and we specifically examine whether and how they have examined future projections of hazard, exposure, and/or vulnerability. In doing so, we examine similarities and differences between the approaches taken across the different hazards, and we identify potential ways in which different hazard communities can learn from each other. For example, there are a number of global risk studies focusing on hydrological, climatological, and meteorological hazards that have included future projections and disaster risk reduction measures (in the case of floods), whereas fewer exist in the peer-reviewed literature for global studies related to geological hazards. On the other hand, studies of earthquake and tsunami risk are now using stochastic modelling approaches to allow for a fully probabilistic assessment of risk, which could benefit the modelling of risk from other hazards. Finally, we discuss opportunities for learning from methods and approaches being developed and applied to assess natural hazard risks at more continental or regional scales. Through this paper, we hope to encourage further dialogue on knowledge sharing between disciplines and communities working on different hazards and risk and at different spatial scales.
The pipelines are buried structures. They move together with the soil during a seismic event. They are affected from ground motions. The project aims to find out the possible effects of Groningen earthquakes on pipelines of Loppersum and Slochteren.This project is devised for conducting an initial probe on the available data to see the possible actions that can be taken, initially on these two pilot villages, Loppersum and Slochteren, for detecting the potential relationship between the past damages and the seismic activity.Lifeline infrastructure, such as water mains and sewerage systems, covering our urbanised areas like a network, are most of the times, sensitive to seismic actions. This sensitivity can be in the form of extended damage during seismic events, or other collateral damages, such as what happened in Christchurch Earthquakes in 2011 in New Zealand when the sewerage system of the city was filled in with tonnes of sand due to liquefaction.Regular damage detection is one of key solutions for operational purposes. The earthquake mitigation, however, needs large scale risk studies with expected spatial distribution of damages for varying seismic hazard levels.