Background: The built environment is increasingly recognized as a determinant for health and health behaviors. Existing evidence regarding the relationship between environment and health (behaviors) is varying in significance and magnitude, and more high-quality longitudinal studies are needed. The aim of this study was to evaluate the effects of a major urban redesign project on physical activity (PA), sedentary behavior (SB), active transport (AT), health-related quality of life (HRQOL), social activities (SA) and meaningfulness, at 29–39 months after opening of the reconstructed area. Methods: PA and AT were measured using accelerometers and GPS loggers. HRQOL and sociodemographic characteristics were assessed using questionnaires. In total, 241 participants provided valid data at baseline and follow-up. We distinguished three groups, based on proximity to the intervention area: maximal exposure group, minimal exposure group and no exposure group. Results: Both the maximal and minimal exposure groups showed significantly different trends regarding transportbased PA levels compared to the no exposure group. In the exposure groups SB decreased, while it increased in the no exposure group. Also, transport-based light intensity PA remained stable in the exposure groups, while it significantly decreased in the no exposure group. No intervention effects were found for total daily PA levels. Scores on SA and meaningfulness increased in the maximal exposure group and decreased in the minimal and no exposure group, but changes were not statistically significant. Conclusion: The results of this study emphasize the potential of the built environment in changing SB and highlights the relevance of longer-term follow-up measurements to explore the full potential of urban redesign projects.
Algorithmic curation is a helpful solution for the massive amount of content on the web. The term is used to describe how platforms automate the recommendation of content to users. News outlets, social networks and search engines widely use recommendation systems. Such automation has led to worries about selective exposure and its side effects. Echo chambers occur when we are over-exposed to the news we like or agree with, distorting our perception of reality (1). Filter bubbles arise where the information we dislike or disagree with is automatically filtered out – narrowing what we know (2). While the idea of Filter Bubbles makes logical sense, the magnitude of the "filter bubble effect", reducing diversity, has been questioned [3]. Most empirical studies indicate that algorithmic recommendations have not locked large audience segments into bubbles [4]. However, little attention has been paid to the interplay between technological, social, and cognitive filters. We proposed an Agent-based Modelling to simulate users' emergent behaviour and track their opinions when getting news from news outlets and social networks. The model aims to understand under which circumstances algorithmic filtering and social network dynamics affect users' innate opinions and which interventions can mitigate the effect. Agent-based models simulate the behaviour of multiple individual agents forming a larger society. The behaviour of the individual agents can be elementary, yet the population's behaviour can be much more than the sum of its parts. We have designed different scenarios to analyse the contributing factors to the emergence of filter bubbles. It includes different recommendation algorithms and social network dynamics. Cognitive filters are based on the Triple Filter Bubble model [5].References1.Richard Fletcher, 20202.Eli Pariser, 20123.Chitra & Musco, 20204. Möller et al., 20185. Daniel Geschke et al, 2018