In the wake of neo-liberal informed global trends to set performance standards and intensify accountability, the Dutch government aimed for ‘raising standards for basic skills’. While the implementation of literacy standards was hardly noticed, the introduction of numeracy standards caused a major backlash in secondary schools, which ended in a failed introduction of a high stakes test. How can these major differences be explained? Inspired by Foucault’s governmentality concept a theoretical framework is developed to allow for detailed empirical research on steering processes in complex systems in which many actors are involved in educational decision-making. A mixed-methods multiple embedded case-study was conducted comprising nine school boards and fifteen secondary schools. Analyses unveil processes of responsibilisation, normalisation and emerging dividing practices. Literacy standards reinforced responsibilities of Dutch language teachers; for numeracy, school leadership created entirely new roles and responsibilities for teachers. Literacy standards were incorporated in an already used instrument which made implementation both subtle and inevitable. For numeracy, schools distinguished students by risk of not passing the new test affirming the disciplinary nature of schools in the process. While little changed to address teachers main concerns about students’ literacy skills, the failed introduction of the numeracy test usurped most resources.
The methodology of biomimicry design thinking is based on and builds upon the overarching patterns that all life abides by. “Cultivating cooperative relationships” within an ecosystem is one such pattern we as humans can learn from to nurture our own mutualistic and symbiotic relationships. While form and process translations from biology to design have proven accessible by students learning biomimicry, the realm of translating biological functions in a systematic approach has proven to be more difficult. This study examines how higher education students can approach the gap that many companies in transition are struggling with today; that of thinking within the closed loops of their own ecosystem, to do good without damaging the system itself. Design students should be able to assess and advise on product design choices within such systems after graduation. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter, and many obstacles are encountered by students and their professional clients when trying to implement systems thinking into their design process. While biomimicry offers guidelines and methodology, there is insufficient research on complex, systems-level problem solving that systems thinking biomimicry requires. This study looks at factors found in course exercises, through student surveys and interviews that helped (novice) professionals initiate systems thinking methods as part of their strategy. The steps found in this research show characteristics from student responses and matching educational steps which enabled them to develop their own approach to challenges in a systems thinking manner. Experiences from the 2022 cohort of the semester “Design with Nature” within the Industrial Design Engineering program at The Hague University of Applied Sciences in the Netherlands have shown that the mixing and matching of connected biological design strategies to understand integrating functions and relationships within a human system is a promising first step. Stevens LL, Whitehead C, Singhal A. Cultivating Cooperative Relationships: Identifying Learning Gaps When Teaching Students Systems Thinking Biomimicry. Biomimetics. 2022; 7(4):184. https://doi.org/10.3390/biomimetics7040184
Formative Use of Assessment to Foster Self‑Regulated Learning: the Alignment of Teachers’ Conceptions and Classroom Assessment Practices Journal of Formative Design in Learning (AECT)
Traffic accidents are a severe public health problem worldwide, accounting for approximately 1.35 million deaths annually. Besides the loss of life, the social costs (accidents, congestion, and environmental damage) are significant. In the Netherlands, in 2018, these social costs were approximately € 28 billion, in which traffic accidents alone accounted for € 17 billion. Experts believe that Automated Driving Systems (ADS) can significantly reduce these traffic fatalities and injuries. For this reason, the European Union mandates several ADS in new vehicles from 2022 onwards. However, the utility of ADS still proves to present difficulties, and their acceptance among drivers is generally low. As of now, ADS only supports drivers within their pre-defined safety and comfort margins without considering individual drivers’ preferences, limiting ADS in behaving and interacting naturally with drivers and other road users. Thereby, drivers are susceptible to distraction (when out-of-the-loop), cannot monitor the traffic environment nor supervise the ADS adequately. These aspects induce the gap between drivers and ADS, raising doubts about ADS’ usefulness among drivers and, subsequently, affecting ADS acceptance and usage by drivers. To resolve this issue, the HUBRIS Phase-2 consortium of expert academic and industry partners aims at developing a self-learning high-level control system, namely, Human Counterpart, to bridge the gap between drivers and ADS. The central research question of this research is: How to develop and demonstrate a human counterpart system that can enable socially responsible human-like behaviour for automated driving systems? HUBRIS Phase-2 will result in the development of the human counterpart system to improve the trust and acceptance of drivers regarding ADS. In this RAAK-PRO project, the development of this system is validated in two use-cases: I. Highway: non-professional drivers; II. Distribution Centre: professional drivers.
Traffic accidents are a severe public health problem worldwide, accounting for approximately 1.35 million deaths annually. Besides the loss of life, the social costs (accidents, congestion, and environmental damage) are significant. In the Netherlands, in 2018, these social costs were approximately € 28 billion, in which traffic accidents alone accounted for € 17 billion. Experts believe that Automated Driving Systems (ADS) can significantly reduce these traffic fatalities and injuries. For this reason, the European Union mandates several ADS in new vehicles from 2022 onwards. However, the utility of ADS still proves to present difficulties, and their acceptance among drivers is generally low.As of now, ADS only supports drivers within their pre-defined safety and comfort margins without considering individual drivers’ preferences, limiting ADS in behaving and interacting naturally with drivers and other road users. Thereby, drivers are susceptible to distraction (when out-of-the-loop), cannot monitor the traffic environment nor supervise the ADS adequately. These aspects induce the gap between drivers and ADS, raising doubts about ADS’ usefulness among drivers and, subsequently, affecting ADS acceptance and usage by drivers.To resolve this issue, the HUBRIS Phase-2 consortium of expert academic and industry partners aims at developing a self-learning high-level control system, namely, Human Counterpart, to bridge the gap between drivers and ADS. The central research question of this research is:How to develop and demonstrate a human counterpart system that can enable socially responsible human-like behaviour for automated driving systems?HUBRIS Phase-2 will result in the development of the human counterpart system to improve the trust and acceptance of drivers regarding ADS. In this RAAK-PRO project, the development of this system is validated in two use-cases:I. Highway: non-professional drivers;II. Distribution Centre: professional drivers.Collaborative partners:Bielefeld University of Applied Sciences, Bricklog B.V., Goudappel B.V., HaskoningDHV Nederland B.V., Rhine-Waal University of Applied Sciences, Rijkswaterstaat, Saxion, Sencure B.V., Siemens Industry Software Netherlands B.V., Smits Opleidingen B.V., Stichting Innovatiecentrum Verkeer en Logistiek, TNO Den Haag, TU Delft, University of Twente, V-Tron B.V., XL Businesspark Twente.