Meaning-making and sense-making are generally assumed to be part of students’ personal vocational knowledge development, since they contribute to both students’ socialisation in a vocation and students’ personalisation of concepts, values and beliefs regarding that vocation. However, how students in vocational education acquire meaning and make sense of vocational knowledge is not explained. Furthermore, examples of what these processes entail in the context of vocational education are lacking. A multiple case study was performed to explore students’ meaning-making and sense-making in classroom interactions in Dutch senior secondary vocational education. Our results show that meaning-making is a process in which students interpret vocational knowledge by explicating and clarifying this knowledge. Sense-making is perceived to be a process in which students concretise vocational knowledge by testing and justifying this knowledge. A research model was developed to describe how students make meaning and sense of vocational knowledge in interaction with practitioners.
DOCUMENT
Through video-materials of use-in-practice we present and discuss NOOT, an interactive tool that supports sense-making during creative sessions. The project investigates how ‘cognitive scaffolding’ may support such sense-making.
DOCUMENT
The paper explores how a post-cognitive approach to human perception can help the design of wearable technologies that augment sense-making. This approach relies on the notion of pure experience to understand how we can make sense of the world without interpreting it, for example through our body, as claimed by phenomenology. In order to understand how to design wearable technologies for pure experience, we first held interviews with experts from different domains, all investigating how to express and recognise pure experience. Subsequently, we had a focus group with professional dancers: given their heightened sense of bodily cognition in their experience, we wanted to verify the extent to which the experts’ practice could be claimed back into the dancers’ experience. In this paper, we will present our preliminary findings.
LINK
Design, Design Thinking, and Co-design have gained global recognition as powerful approaches for innovation and transformation. These methodologies foster stakeholder engagement, empathy, and collective sense-making, and are increasingly applied to tackle complex societal and institutional challenges. However, despite their collaborative potential, many initiatives encounter resistance, participation fatigue, or only result in superficial change. A key reason lies in the overlooked undercurrent—the hidden systemic dynamics that shape transitions. This one-year exploratory research project, initiated by the Expertise Network Systemic Co-design (ESC), aims to make systemic work accessible to creative professionals and companies working in social and transition design. It focuses on the development of a Toolkit for Systemic Work, enabling professionals to recognize underlying patterns, power structures, and behavioral dynamics that can block or accelerate innovation. The research builds on the shared learning agenda of the ESC network, which brings together universities of applied sciences, design practitioners, and organizations such as the Design Thinkers Group, Mindpact, and Vonken van Vernieuwing. By integrating systemic insights—drawing from fields like systemic therapy, constellation work, and behavioral sciences—into co-design practices, the project strengthens the capacity to not only design solutions but also navigate the forces that shape sustainable change. The central research question is: How can we make systemic work accessible to creative professionals, to support its application in social and transition design? Through the development and testing of practical tools and methods, this project bridges the gap between academic insights and the concrete needs of practitioners. It contributes to the professionalization of design for social innovation by embedding systemic awareness and collective learning into design processes, offering a foundation for deeper impact in societal transitions.
Road freight transport contributes to 75% of the global logistics CO2 emissions. Various European initiatives are calling for a drastic cut-down of CO2 emissions in this sector [1]. This requires advanced and very expensive technological innovations; i.e. re-design of vehicle units, hybridization of powertrains and autonomous vehicle technology. One particular innovation that aims to solve this problem is multi-articulated vehicles (road-trains). They have a smaller footprint and better efficiency of transport than traditional transport vehicles like trucks. In line with the missions for Energy Transition and Sustainability [2], road-trains can have zero-emission powertrains leading to clean and sustainable urban mobility of people and goods. However, multiple articulations in a vehicle pose a problem of reversing the vehicle. Since it is extremely difficult to predict the sideways movement of the vehicle combination while reversing, no driver can master this process. This is also the problem faced by the drivers of TRENS Solar Train’s vehicle, which is a multi-articulated modular electric road vehicle. It can be used for transporting cargo as well as passengers in tight environments, making it suitable for operation in urban areas. This project aims to develop a reverse assist system to help drivers reverse multi-articulated vehicles like the TRENS Solar Train, enabling them to maneuver backward when the need arises in its operations, safely and predictably. This will subsequently provide multi-articulated vehicle users with a sustainable and economically viable option for the transport of cargo and passengers with unrestricted maneuverability resulting in better application and adding to the innovation in sustainable road transport.
The aim of the project is to design, test, refine and deploy a new assessment tool focusing on individual Future Literacy of students. Future Literacy is the ability to produce and process complex visions of the future and make sense thereof. FL is therefore an essential component of any 21st Century Skills set, in the sense that it focuses on the ability of students to prepare themselves for uncertainty and unexpected challenges. At present, the competing concepts of 21st Century Skills have a common denominator in the core idea of fostering personal development of "T-shaped individuals" who have depth in a particular field and breadth in their skill set and thinking. The students' individual ability to "use the future": make sense of emergent reality, deal with complex problems, make decisions based on collective intelligence, plan and prepare for the future, is as important in making educational choices as in taking educated bets concerning their professional, personal and political futures. The project outcome: a new tool for FL assessment will test the feasibility of rigorous measurement, and assessment of FL, to inform better curriculum design and methodological development.