Sensor technology is increasingly applied for the purpose of monitoring elderly’s Activities of Daily Living (ADL), a set of activities used by physicians to benchmark physical and cognitive decline. Visualizing deviations in ADL can help medical specialists and nurses to recognize disease symptoms at an early stage. This paper presents possible visualizations for identifying such deviations. These visualizations have been iteratively explored and developed with three different medical specialists to better understand which deviations are relevant according to the different medical specialisms and explore how these deviations should be best presented. The study results suggest that the participants found a monthly bar graph in which activities are represented by colours as the most suitable from the ones presented. Although the visualizations of every ADL was found to be more or less relevant by the different medical specialists, the preference for focusing on specific ADL’s varied from specialist to specialist.
Conference proceedings International Symposium on Intelligent Manufacturing Environments
Existing research on the recognition of Activities of Daily Living (ADL) from simple sensor networks assumes that only a single person is present in the home. In real life there will be situations where the inhabitant receives visits from family members or professional health care givers. In such cases activity recognition is unreliable. In this paper, we investigate the problem of detecting multiple persons in an environment equipped with a sensor network consisting of binary sensors. We conduct a real-life experiment for detection of visits in the oce of the supervisor where the oce is equipped with a video camera to record the ground truth. We collected data during two months and used two models, a Naive Bayes Classier and a Hidden Markov Model for a visitor detection. An evaluation of these two models shows that we achieve an accuracy of 83% with the NBC and an accuracy of 92% with a HMM, respectively.
MULTIFILE
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
The utilization of drones in various industries, such as agriculture, infrastructure inspection, and surveillance, has significantly increased in recent years. However, navigating low-altitude environments poses a challenge due to potential collisions with “unseen” obstacles like power lines and poles, leading to safety concerns and equipment damage. Traditional obstacle avoidance systems often struggle with detecting thin and transparent obstacles, making them ill-suited for scenarios involving power lines, which are essential yet difficult to perceive visually. Together with partners that are active in logistics and safety and security domains, this project proposal aims at conducting feasibility study on advanced obstacle detection and avoidance system for low-flying drones. To that end, the main research question is, “How can AI-enabled, robust and module invisible obstacle avoidance technology can be developed for low-flying drones? During this feasibility study, cutting-edge sensor technologies, such as LiDAR, radar, camera and advanced machine learning algorithms will be investigated to what extent they can be used be to accurately detect “Not easily seen” obstacles in real-time. The successful conclusion of this project will lead to a bigger project that aims to contribute to the advancement of drone safety and operational capabilities in low-altitude environments, opening new possibilities for applications in industries where low-flying drones and obstacle avoidance are critical.
Fontys University of Applied Science’s Institute of Engineering, and the Dutch Institute for Fundamental Energy Research (DIFFER) are proposing to set up a professorship to develop novel sensors for fusion reactors. Sensors are a critical component to control and optimise the unstable plasma of Tokamak reactors. However, sensor systems are particularly challenging in fusion-plasma facing components, such as the divertor. The extreme conditions make it impossible to directly incorporate sensors. Furthermore, in advanced reactor concepts, such as DEMO, access to the plasma via ports will be extremely limited. Therefore, indirect or non-contact sensing modalities must be employed. The research group Distributed Sensor Systems (DSS) will develop microwave sensor systems for characterising the plasma in a tokamak’s divertor. DSS will take advantage of recent rapid developments in high frequency integrated circuits, found, for instance, in automotive radar systems, to develop digital reflectometers. Access through the divertor wall will be achieved via surface waveguide structures. The waveguide will be printed using 3D tungsten printing that has improved precision, and reduced roughness. These components will be tested for durability at DIFFER facilities. The performance of the microwave reflectometer, including waveguides, will be tested by using it to analyse the geometry and dynamics of the Magnum PSI plasma beam. The development of sensor-based systems is an important aspect in the integrated research and education program in Electrical Engineering, where DSS is based. The sensing requirements from DIFFER offers an interesting and highly relevant research theme to DSS and exciting projects for engineering students. Hence, this collaboration will strengthen both institutes and the educational offerings at the institute of engineering. Furthermore millimeter wave (mmWave) sensors have a wide range of potential applications, from plasma characterisation (as in this proposal) though to waste separation. Our research will be a step towards realising these broader application areas.