Background Physical activity after bariatric surgery is associated with sustained weight loss and improved quality of life. Some bariatric patients engage insufficiently in physical activity. The aim of this study was to examine whether and to what extent both physical activity and exercise cognitions have changed at one and two years post-surgery, and whether exercise cognitions predict physical activity. Methods Forty-two bariatric patients (38 women, 4 men; mean age 38 ± 8 years, mean body mass index prior to surgery 47 ± 6 kg/m²), filled out self-report instruments to examine physical activity and exercise cognitions pre- and post surgery. Results Moderate to large healthy changes in physical activity and exercise cognitions were observed after surgery. Perceiving less exercise benefits and having less confidence in exercising before surgery predicted less physical activity two years after surgery. High fear of injury one year after surgery predicted less physical activity two years after surgery. Conclusion After bariatric surgery, favorable changes in physical activity and exercise cognitions are observed. Our results suggest that targeting exercise cognitions before and after surgery might be relevant to improve physical activity.
MULTIFILE
tmoA and related genes encode the alpha-subunit of the hydroxylase component of the major group (subgroup 1 of subfamily 2) of bacterial multicomponent mono-oxygenase enzyme complexes involved in aerobic benzene, toluene, ethylbenzene and xylene (BTEX) degradation. A PCR-denaturing gradient gel electrophoresis (DGGE) method was developed to assess the diversity of tmoA-like gene sequences in environmental samples using a newly designed moderately degenerate primer set suitable for that purpose. In 35 BTEX-degrading bacterial strains isolated from a hydrocarbon polluted aquifer, tmoA-like genes were only detected in two o-xylene degraders and were identical to the touA gene of Pseudomonas stutzeri OX1. The diversity of tmoA-like genes was examined in DNA extracts from contaminated and non-contaminated subsurface samples at a site containing a BTEX-contaminated groundwater plume. Differences in DGGE patterns were observed between strongly contaminated, less contaminated and non-contaminated samples and between different depths, suggesting that the diversity of tmoA-like genes was determined by environmental conditions including the contamination level. Phylogenetic analysis of the protein sequences deduced from the amplified amplicons showed that the diversity of TmoA-analogues in the environment is larger than suggested from described TmoA-analogues from cultured isolates, which was translated in the DGGE patterns. Although different positions on the DGGE gel can correspond to closely related TmoA-proteins, relationships could be noticed between the position of tmoA-like amplicons in the DGGE profile and the phylogenetic position of the deduced protein sequence.
DOCUMENT
Using an optimized transformation protocol we have studied the possible interactions between transforming plasmid DNA and the Hansenula polymorpha genome. Plasmids consisting only of a pBR322 replicon, an antibiotic resistance marker for Escherichia coli and the Saccharomyces cerevisiae LEU2 gene were shown to replicate autonomously in the yeast at an approximate copy number of 6 (copies per genome equivalent). This autonomous behaviour is probably due to an H. polymorpha replicon-like sequence present on the S. cerevisiae LEU2 gene fragment. Plasmids replicated as multimers consisting of monomers connected in a head-to-tail configuration. Two out of nine transformants analysed appeared to contain plasmid multimers in which one of the monomers contained a deletion. Plasmids containing internal or flanking regions of the genomic alcohol oxidase gene were shown to integrate by homologous single or double cross-over recombination. Both single- and multi-copy (two or three) tandem integrations were observed. Targeted integration occurred in 1-22% of the cases and was only observed with plasmids linearized within the genomic sequences, indicating that homologous linear ends are recombinogenic in H. polymorpha. In the cases in which no targeted integration occurred, double-strand breaks were efficiently repaired in a homology-independent way. Repair of double-strand breaks was precise in 50-68% of the cases. Linearization within homologous as well as nonhomologous plasmid regions stimulated transformation frequencies up to 15-fold.
DOCUMENT
Five methods were compared to determine the best technique for accurate identification of coagulase-negative staphylococci (CoNS) (n=142 strains). MALDI-TOF MS showed the best results for rapid and accurate CoNS differentiation (correct identity in 99.3%). An alternative to this approach could be Vitek2 combined with partial tuf gene sequencing.
DOCUMENT
Publicatie bij de rede, uitgesproken bij de aanvaarding van het ambt als lector Green Biotechnology aan Hogeschool Inholland te Amsterdam op 20 mei2015 door dr. C.M. Kreike
DOCUMENT
Small RNAs are important regulators of genome function, yet their prediction in genomes is still a major computational challenge. Statistical analyses of pre-miRNA sequences indicated that their 2D structure tends to have a minimal free energy (MFE) significantly lower than MFE values of equivalently randomized sequences with the same nucleotide composition, in contrast to other classes of non-coding RNA. The computation of many MFEs is, however, too intensive to allow for genome-wide screenings.
DOCUMENT
From the publisher: "Background: The introduction of whole new foods in a population may lead to sensitization and food allergy. This constitutes a potential public health problem and a challenge to risk assessors and managers as the existing understanding of the pathophysiological processes and the currently available biological tools for prediction of the risk for food allergy development and the severity of the reaction are not sufficient. There is a substantial body of in vivo and in vitro data describing molecular and cellular events potentially involved in food sensitization. However, these events have not been organized in a sequence of related events that is plausible to result in sensitization, and useful to challenge current hypotheses. The aim of this manuscript was to collect and structure the current mechanistic understanding of sensitization induction to food proteins by applying the concept of adverse outcome pathway (AOP). Main body: The proposed AOP for food sensitization is based on information on molecular and cellular mechanisms and pathways evidenced to be involved in sensitization by food and food proteins and uses the AOPs for chemical skin sensitization and respiratory sensitization induction as templates. Available mechanistic data on protein respiratory sensitization were included to fill out gaps in the understanding of how proteins may affect cells, cell-cell interactions and tissue homeostasis. Analysis revealed several key events (KE) and biomarkers that may have potential use in testing and assessment of proteins for their sensitizing potential. Conclusion: The application of the AOP concept to structure mechanistic in vivo and in vitro knowledge has made it possible to identify a number of methods, each addressing a specific KE, that provide information about the food allergenic potential of new proteins. When applied in the context of an integrated strategy these methods may reduce, if not replace, current animal testing approaches. The proposed AOP will be shared at the www.aopwiki.org platform to expand the mechanistic data, improve the confidence in each of the proposed KE and key event relations (KERs), and allow for the identification of new, or refinement of established KE and KERs." Authors: Jolanda H. M. van BilsenEmail author, Edyta Sienkiewicz-Szłapka, Daniel Lozano-Ojalvo, Linette E. M. Willemsen, Celia M. Antunes, Elena Molina, Joost J. Smit, Barbara Wróblewska, Harry J. Wichers, Edward F. Knol, Gregory S. Ladics, Raymond H. H. Pieters, Sandra Denery-Papini, Yvonne M. Vissers, Simona L. Bavaro, Colette Larré, Kitty C. M. Verhoeckx and Erwin L. Roggen
LINK
Control of plant growth is an important aspect of crop productivity and yield in agriculture. Overexpression of the At CHR12/ 23 genes in Arabidopsis thaliana reduced growth habit without other morphological changes. These two genes encode Snf2 chromatin remodelling ATPases. Here, we translate this approach to the horticultural crop tomato ( Solanum lycopersicum). We identified and cloned the single tomato ortholog of the two Arabidopsis Snf2 genes, designated Sl CHR1. Transgenic tomato plants (cv. Micro-Tom) that constitutively overexpress the coding sequence of Sl CHR1 show reduced growth in all developmental stages of tomato. This confirms that Sl CHR1 combines the functions of both Arabidopsis genes in tomato. Compared to the wild type, the transgenic seedlings of tomato have significantly shorter roots, hypocotyls and reduced cotyledon size. Transgenic plants have a much more compact growth habit with markedly reduced plant height, severely compacted reproductive structures with smaller flowers and smaller fruits. The results indicate that either GMO-based or non- GMO-based approaches to modulate the expression of chromatin remodelling ATPase genes could develop into methods to control plant growth, for example to replace the use of chemical growth retardants. This approach is likely to be applicable and attractive for any crop for which growth habit reduction has added value.
DOCUMENT
Carnitine/choline acyltransferases play diverse roles in energy metabolism and neuronal signalling. Our knowledge of their evolutionary relationships, important for functional understanding, is incomplete. Therefore, we aimed to determine the evolutionary relationships of these eukaryotic transferases. We performed extensivephylogenetic and intron position analyses. We found that mammalian intramitochondrial CPT2 is most closely related to cytosolic yeast carnitine transferases (Sc-YAT1 and 2), whereas the other members of the family are related to intraorganellar yeast Sc-CAT2. Therefore, the cytosolically active CPT1 more closely resembles intramitochondrial ancestors than CPT2. The choline acetyltransferase is closely related to carnitine acetyltransferase and shows lower evolutionary rates than long chain acyltransferases. In the CPT1 family several duplications occurred during animal radiation, leading to the isoforms CPT1A, CPT1B and CPT1C. In addition, we found five CPT1-like genes in Caenorhabditis elegans that strongly group to the CPT1 family. The long branch leading to mammalian brain isoform CPT1C suggests that either strong positive or relaxed evolution has taken place on this node. The presented evolutionary delineation of carnitine/choline acyltransferases adds to current knowledge on their functions and provides tangible leads for further experimental research.
DOCUMENT
The Green Biotechnology research group focusses on the application of molecular breeding/biotechnological tools and also on the development/analysis of new tools, for the breeding of enhanced vegetable crops and ornamental plants. The research group is positioned within Inholland University of Applied Sciences, Life Sciences & Chemistry and serves as a link between the breeding companies and our education of the skilled technicians of tomorrow. We are working on the development of a method for targeted mutagenesis of plant genomes using the bacterial CRISPR-Cas system. This method greatly enhances the effectiveness and speed by which new crops and plants can be developed
DOCUMENT