The authors present the study design and main findings of a quasi-experimental evaluation of the learning efficacy of the Serious Game (SG) 'Hazard Recognition' (HR). The SG-HR is a playable, two-level demonstration version for training supervisors who work at oil and gas drilling sites. The game has been developed with a view to developing a full-blown, game-based training environment for operational safety in the oil and gas industry. One of the many barriers to upscaling and implementing a game for training is the questioned learning efficacy of the game. The authors therefore conducted a study into the game's learning efficacy and the factors that contribute to it. The authors used a Framework for Comparative Evaluation (FCE) of SG, and combined it with the Kowalski model for Hazard Detection and the Noel Burch competence model. Four experimental game sessions were held, two involving 60 professionals working in the oil and gas industry, and two with engineering students and consultants. Relevant constructs were operationalized and data were gathered using pre and post-game questionnaires. The authors conclude that the SG-HR improves players' skills and knowledge on hazard detection and assessment, and it facilitates significant learning efficacy in this topic. The FCE proved very helpful for setting up the evaluation and selecting the constructs.
This paper introduces a creative approach aimed at empowering desk-bound occupational groups to address the issue of physical inactivity at workplaces. The approach involves a gamified toolkit called Workplace Vitality Mapping (WVM) (see Figure 1) designed to encourage self-reflection in sedentary contexts and foster the envision of physical vitality scenarios. This hybrid toolkit comprises two main components: A Card Game (on-site) for context reflection and a Co-design Canvas (Online) for co-designing vitality solutions. Through the card games, participants reflect on key sedentary contexts, contemplating their preferable physical vitality scenarios with relevant requirements. The co-design canvas facilitates the collaborative construction and discussion of vitality scenarios’ development. The perceptions and interactions of the proposed toolkit from the target group were studied and observed through a hybrid workshop, which demonstrated promising results in terms of promoting participants’ engagement experience in contextual reflections and deepening their systemic understanding to tackle the physical inactivity issue. As physical inactivity becomes an increasingly pressing concern, this approach offers a promising participatory way for gaining empathetic insights toward community-level solutions.
Most educational or training games, also referred to as serious games, have been developed without an underlying design theory. In order to make a contribution to the development of such a theory, we present the underlying design philosophy of Levee Patroller, a 3D first-person game used to train levee patrollers in the Netherlands. This approach stipulates that the design of a serious game is a multi-objective problem where trade-offs need to be made. Making these trade-offs takes place in a 'design space' defined by three general boundary criteria: 1. fun (game), 2. learning (pedagogy), and 3. validity (reality). The various tensions between these three criteria make it difficult to 'balance' or create harmony in a serious game. We illustrate this process with a discussion on the design of Levee Patroller. In addition, we translate the aforementioned general design criteria into a number of concrete design requirements for serious games.
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.
Inzet van serious games als scholingsinstrument voor zorgprofessionals of als patiëntinterventie neemt sterk toe. Serious games kunnen kosten besparen en zorgkwaliteit verbeteren. (Potentiële) afnemers vragen, in lijn met het medische onderzoeksparadigma, vaak naar de klinische effectiviteit (internal validity) van deze games. Het gros van de Nederlandse game-ontwikkelaars bestaat echter uit kleine ondernemingen die het aan middelen en expertise ontbreekt om de hiervoor benodigde longitudinale onderzoekstrajecten uit te voeren. Tegelijkertijd tonen mkb’ers, meestal zonder ervan bewust te zijn, tijdens het game-ontwikkelproces al verschillende validiteitsvormen aan volgens het design-onderzoeksparadigma (face validity, construct validity, e.d.). Door dit niet bij hun afnemers kenbaar te maken, komt een constructieve dialoog over validiteit moeilijk op gang en lopen mkb’ers opdrachten mis. Het ontbreekt hen aan een begrippenkader en praktische handvatten. Bestaande raamwerken zijn nog te theorie-gedreven. Om mkb’ers te helpen de 'clash' te overbruggen tussen het medische en het design-onderzoeksparadigma, ontwikkelen lectoraten ICT-innovaties in de Zorg (Hogeschool Windesheim, penvoerder) en Serious Gaming (NHL Stenden Hogeschool) samen met elf mkb’ers, afnemers, studenten en experts in een learning community drie hulpmiddelen: •Checklist: praktische mkb-richtlijnen voor het vaststellen van validiteit; •Beslisboom: op basis waarvan mkb’ers onderbouwd de juiste validatiemethode kunnenselecteren; •Serious game: om samen met (potentiële) afnemers te spelen, zodat verschillende soortenvaliditeit expliciet benoemd worden. De hulpmiddelen worden inhoudelijk gevoed door casestudies waarin mkb’ers gevolgd worden in hoe validiteit momenteel wordt vastgesteld en geëxpliciteerd in het ontwikkelproces. Vervolgens brengen we de ontworpen hulpmiddelen in de mkb-praktijk voor evaluatie. Opgeleverde hulpmiddelen stellen mkb’ers in staat werkbare validatiemethoden toe te passen gedurende het game-ontwikkelproces om acceptabele bewijslast op te leveren voor potentiële afnemers, waardoor hun marktpositie versterkt. Ook draagt het project bij aan operationalisering van bestaande raamwerken en kunnen de hulpmiddelen in game design-curricula worden geïncorporeerd.
The IMPULS-2020 project DIGIREAL (BUas, 2021) aims to significantly strengthen BUAS’ Research and Development (R&D) on Digital Realities for the benefit of innovation in our sectoral industries. The project will furthermore help BUas to position itself in the emerging innovation ecosystems on Human Interaction, AI and Interactive Technologies. The pandemic has had a tremendous negative impact on BUas industrial sectors of research: Tourism, Leisure and Events, Hospitality and Facility, Built Environment and Logistics. Our partner industries are in great need of innovative responses to the crises. Data, AI combined with Interactive and Immersive Technologies (Games, VR/AR) can provide a partial solution, in line with the key-enabling technologies of the Smart Industry agenda. DIGIREAL builds upon our well-established expertise and capacity in entertainment and serious games and digital media (VR/AR). It furthermore strengthens our initial plans to venture into Data and Applied AI. Digital Realities offer great opportunities for sectoral industry research and innovation, such as experience measurement in Leisure and Hospitality, data-driven decision-making for (sustainable) tourism, geo-data simulations for Logistics and Digital Twins for Spatial Planning. Although BUas already has successful R&D projects in these areas, the synergy can and should significantly be improved. We propose a coherent one-year Impuls funded package to develop (in 2021): 1. A multi-year R&D program on Digital Realities, that leads to, 2. Strategic R&D proposals, in particular a SPRONG/sleuteltechnologie proposal; 3. Partnerships in the regional and national innovation ecosystem, in particular Mind Labs and Data Development Lab (DDL); 4. A shared Digital Realities Lab infrastructure, in particular hardware/software/peopleware for Augmented and Mixed Reality; 5. Leadership, support and operational capacity to achieve and support the above. The proposal presents a work program and management structure, with external partners in an advisory role.