From November 2013 till January 2014 a minor ‘Smart Life Rhythms’ was taught at The Hague University of Applied Sciences. In the minor students used service design methods to develop solutions for improving life rhythms. Reflection on the minor produced the insight that building physical prototypes early on in the design process was key to success. Further discussions with colleagues and a literature review gave more arguments for the motto ‘Just build it’ – an encouragement to build simple physical models in the early stages of the service design process. Building these simple physical models is not just advocated by educators and in line with service design principles such as being iterative and user-centered. In his book ‘the Craftsman’ (Sennett, 2009) Richard Sennett provides us with more fundamental arguments regarding the value of ‘making things’. On top of the added value to the design process in itself, simple physical models are a tool for engaging both clients, users and students in the design process. So get out your glue gun and start building!
Closing the loop of products and materials in Product Service Systems (PSS) can be approached by designers in several ways. One promising strategy is to invoke a greater sense of ownership of the products and materials that are used within a PSS. To develop and evaluate a design tool in the context of PSS, our case study focused on a bicycle sharing service. The central question was whether and how designers can be supported with a design tool, based on psychological ownership, to involve users in closing the loop activities. We developed a PSS design tool based on psychological ownership literature and implemented it in a range of design iterations. This resulted in ten design proposals and two implemented design interventions. To evaluate the design tool, 42 project members were interviewed about their design process. The design interventions were evaluated through site visits, an interview with the bicycle repairer responsible, and nine users of the bicycle service. We conclude that a psychological ownership-based design tool shows potential to contribute to closing the resource loop by allowing end users and service provider of PSS to collaborate on repair and maintenance activities. Our evaluation resulted in suggestions for revising the psychological ownership design tool, including adding ‘Giving Feedback’ to the list of affordances, prioritizing ‘Enabling’ and ‘Simplification’ over others and recognize a reciprocal relationship between service provider and service user when closing the loop activities.
“Empowering learners to create a sustainable future” This is the mission of Centre of Expertise Mission-Zero at The Hague University of Applied Sciences (THUAS). The postdoc candidate will expand the existing knowledge on biomimicry, which she teaches and researches, as a strategy to fulfil the mission of Mission-Zero. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter. The candidate aims to recognize the value of systematic biomimicry, leading the way towards the ecosystems services we need tomorrow (Pedersen Zari, 2017). Globally, biomimicry demonstrates strategies contributing to solving global challenges such as Urban Heat Islands (UHI) and human interferences, rethinking how climate and circular challenges are approached. Examples like Eastgate building (Pearce, 2016) have demonstrated successes in the field. While biomimicry offers guidelines and methodology, there is insufficient research on complex problem solving that systems-thinking requires. Our research question: Which factors are needed to help (novice) professionals initiate systems-thinking methods as part of their strategy? A solution should enable them to approach challenges in a systems-thinking manner just like nature does, to regenerate and resume projects. Our focus lies with challenges in two industries with many unsustainable practices and where a sizeable impact is possible: the built environment (Circularity Gap, 2021) and fashion (Joung, 2014). Mission Zero has identified a high demand for Biomimicry in these industries. This critical approach: 1) studies existing biomimetic tools, testing and defining gaps; 2) identifies needs of educators and professionals during and after an inter-disciplinary minor at The Hague University; and, 3) translates findings into shareable best practices through publications of results. Findings will be implemented into tangible engaging tools for educational and professional settings. Knowledge will be inclusive and disseminated to large audiences by focusing on communication through social media and intervention conferences.
This project addresses the critical issue of staff shortages and training inefficiencies in the hospitality industry, particularly focusing on the hotel sector. It connects with the urgent need for innovative, and effective training solutions to equip (inexperienced) staff with hospitality skills, thereby improving service quality and sustainable career prospects in the hotel industry. The project develops and tests immersive technologies (augmented and virtual reality, AR/VR) tailored to meet specific training needs of hotels. Traditional training methods such as personal trainings, seminars, and written manuals are proving inadequate in terms of learning effectiveness and job readiness, leading to high working pressure and poor staff well-being. This project aims to break this cycle by co-creating immersive training methods that promise to be more engaging and effective. Hotelschool The Hague has initiated steps in this direction by exploring AR and VR technologies for hotel staff training. This project builds on these efforts, aiming to develop accessible, immersive training tools specifically designed for the hotel sector. Specifically, this project aims to explore the effectiveness of these immersive trainings, an aspect largely overlooked in the rapid development of immersive technology solutions. The central research question is: How do immersive AR and VR training methods impact job readiness and learning effectiveness in the hotel sector? The one-year KIEM project period involves co-creating, implementing, and evaluating immersive training in collaboration with Hotelschool The Hague and Hyatt Andaz Amsterdam Prinsengracht Hotel in real-life settings. The partnership with Warp Industries, a leader in immersive technology, is crucial for the project’s success. Our findings will be co-created and multiplied through relevant sector associations such as House of Hospitality. This project aligns with the MV’s Impact Level 1: Transitions by promoting innovative training strategies that can lead to a fundamental shift in the hospitality industry, thereby enhancing social earning capacities.
Manual labour is an important cornerstone in manufacturing and considering human factors and ergonomics is a crucial field of action from both social and economic perspective. Diverse approaches are available in research and practice, ranging from guidelines, ergonomic assessment sheets over to digitally supported workplace design or hardware oriented support technologies like exoskeletons. However, in the end those technologies, methods and tools put the working task in focus and just aim to make manufacturing “less bad” with reducing ergonomic loads as much as possible. The proposed project “Human Centered Smart Factories: design for wellbeing for future manufacturing” wants to overcome this conventional paradigm and considers a more proactive and future oriented perspective. The underlying vision of the project is a workplace design for wellbeing that makes labor intensive manufacturing not just less bad but aims to provide positive contributions to physiological and mental health of workers. This shall be achieved through a human centered technology approach and utilizing advanced opportunities of smart industry technologies and methods within a cyber physical system setup. Finally, the goal is to develop smart, shape-changing workstations that self-adapt to the unique and personal, physical and cognitive needs of a worker. The workstations are responsive, they interact in real time, and promote dynamic activities and varying physical exertion through understanding the context of work. Consequently, the project follows a clear interdisciplinary approach and brings together disciplines like production engineering, human interaction design, creative design techniques and social impact assessment. Developments take place in an industrial scale test bed at the University of Twente but also within an industrial manufacturing factory. Through the human centered design of adaptive workplaces, the project contributes to a more inclusive and healthier society. This has also positive effects from both national (e.g. relieve of health system) as well as individual company perspective (e.g. less costs due to worker illness, higher motivation and productivity). Even more, the proposal offers new business opportunities through selling products and/or services related to the developed approach. To tap those potentials, an appropriate utilization of the results is a key concern . The involved manufacturing company van Raam will be the prototypical implementation partner and serve as critical proof of concept partner. Given their openness, connections and broad range of processes they are also an ideal role model for further manufacturing companies. ErgoS and Ergo Design are involved as methodological/technological partners that deal with industrial engineering and ergonomic design of workplace on a daily base. Thus, they are crucial to critically reflect wider applicability and innovativeness of the developed solutions. Both companies also serve as multiplicator while utilizing promising technologies and methods in their work. Universities and universities of applied sciences utilize results through scientific publications and as base for further research. They also ensure the transfer to education as an important leverage to inspire and train future engineers towards wellbeing design of workplaces.