Objective: To construct the underlying value structure of shared decision making (SDM) models. Method: We included previously identified SDM models (n = 40) and 15 additional ones. Using a thematic analysis, we coded the data using Schwartz’s value theory to define values in SDM and to investigate value relations. Results: We identified and defined eight values and developed three themes based on their relations: shared control, a safe and supportive environment, and decisions tailored to patients. We constructed a value structure based on the value relations and themes: the interplay of healthcare professionals’ (HCPs) and patients’ skills [Achievement], support for a patient [Benevolence], and a good relationship between HCP and patient [Security] all facilitate patients’ autonomy [Self-Direction]. These values enable a more balanced relationship between HCP and patient and tailored decision making [Universalism]. Conclusion: SDM can be realized by an interplay of values. The values Benevolence and Security deserve more explicit attention, and may especially increase vulnerable patients’ Self-Direction. Practice implications: This value structure enables a comparison of values underlying SDM with those of specific populations, facilitating the incorporation of patients’ values into treatment decision making. It may also inform the development of SDM measures, interventions, education programs, and HCPs when practicing.
DOCUMENT
Municipalities often collaborate with other stakeholders in smart city projects to develop and implement technological innovations to address complex urban issues. We propose the shared portfolio approach as an alternative way of collaborating, because we have identified possible limitations when the commonly used single-project approach is adopted in complex contexts, such as the smart city context. The portfolio approach enhances flexibility, an embedded focus and cross-project learning, because partners work on multiple projects – either in parallel or in succession – to develop multiple solutions to a specific problem. An in-depth case study is used to illustrate how the shared portfolio approach works. In practice, these insights can be used by public bodies who aim to collaborate in smart city development or by partners who work on smart city projects and wish to continue their collaboration in a portfolio setting. Conceptually, our paper develops a connection between cross-sector partnership literature and smart city literature by revealing how the shared portfolio approach could be an effective way to deal with the complexities of innovation in the smart city context.
DOCUMENT
University teacher teams can work toward educational change through the process of team learning behavior, which involves sharing and discussing practices to create new knowledge. However, teachers do not routinely engage in learning behavior when working in such teams and it is unclear how leadership support can overcome this problem. Therefore, this study examines when team leadership behavior supports teacher teams in engaging in learning behavior. We studied 52 university teacher teams (281 respondents) involved in educational change, resulting in two key findings. First, analyses of multiple leadership types showed that team learning behavior was best supported by a shared transformational leadership style that challenges the status quo and stimulates team members’ intellect. Mutual transformational encouragement supported team learning more than the vertical leadership source or empowering and initiating structure styles of leadership. Second, moderator analyses revealed that task complexity influenced the relationship between vertical empowering team leadership behavior and team learning behavior. Specifically, this finding suggests that formal team leaders who empower teamwork only affected team learning behavior when their teams perceived that their task was not complex. These findings indicate how team learning behavior can be supported in university teacher teams responsible for working toward educational change. Moreover, these findings are unique because they originate from relating multiple team leadership types to team learning behavior, examining the influence of task complexity, and studying this in an educational setting.
DOCUMENT
The IMPULS-2020 project DIGIREAL (BUas, 2021) aims to significantly strengthen BUAS’ Research and Development (R&D) on Digital Realities for the benefit of innovation in our sectoral industries. The project will furthermore help BUas to position itself in the emerging innovation ecosystems on Human Interaction, AI and Interactive Technologies. The pandemic has had a tremendous negative impact on BUas industrial sectors of research: Tourism, Leisure and Events, Hospitality and Facility, Built Environment and Logistics. Our partner industries are in great need of innovative responses to the crises. Data, AI combined with Interactive and Immersive Technologies (Games, VR/AR) can provide a partial solution, in line with the key-enabling technologies of the Smart Industry agenda. DIGIREAL builds upon our well-established expertise and capacity in entertainment and serious games and digital media (VR/AR). It furthermore strengthens our initial plans to venture into Data and Applied AI. Digital Realities offer great opportunities for sectoral industry research and innovation, such as experience measurement in Leisure and Hospitality, data-driven decision-making for (sustainable) tourism, geo-data simulations for Logistics and Digital Twins for Spatial Planning. Although BUas already has successful R&D projects in these areas, the synergy can and should significantly be improved. We propose a coherent one-year Impuls funded package to develop (in 2021): 1. A multi-year R&D program on Digital Realities, that leads to, 2. Strategic R&D proposals, in particular a SPRONG/sleuteltechnologie proposal; 3. Partnerships in the regional and national innovation ecosystem, in particular Mind Labs and Data Development Lab (DDL); 4. A shared Digital Realities Lab infrastructure, in particular hardware/software/peopleware for Augmented and Mixed Reality; 5. Leadership, support and operational capacity to achieve and support the above. The proposal presents a work program and management structure, with external partners in an advisory role.
With the help of sensors that made data collection and processing possible, many products around us have become “smarter”. The situation that our car, refrigerator, or umbrella communicating with us and each other is no longer a future scenario; it is increasingly a shared reality. There are good examples of such connectedness such as lifestyle monitoring of elderly persons or waste management in a smart city. Yet, many other smart products are designed just for the sake of embedding a chip in something without thinking through what kind of value they add everyday life. In other words, the design of these systems have mainly been driven by technology until now and little studies have been carried out on how the design of such systems helps citizens to improve or maintain the quality of their individual and collective lives. The CREATE-IT research center creates new solutions and methodologies in “digital design” that contribute to the quality of life of citizens. Correspondingly, this proposal focuses on one type of digital design—smart products—and investigate the concept of empowerment in relation to the design of smart products. In particular, the proposal aims to develop a model with its supplementary tools and methods for designing such products better. By following a research-through-design methodology, the proposal intends to offer a critical understanding on designing smart products. Along with its theoretical contribution, the proposal will also aid the students of ICT and design, and professionals such as designers and engineers to create smart products that will empower people and the industry to develop products grounded in a clear user experience and business model.
Many entrepreneurs on Texel want to onboard nature into their business. While a legal toolkit is available (“Onboarding Nature”), they still struggle to bring in the perspective of nature and future generations into their activities in a meaningful way. Representing this shared need, the National Park Duinen van Texel initiated a quest: How can local businesses (including the National Park’s Gastheren) on Texel effectively onboard Nature and Future Generations into their companies in order to secure thriving ecosystem? Realizing that a growing number of businesses are ready to consider an eco-centric perspective on how they run their operations, they feel unequipped to make the change. Therefore drawing on the “Onboarding Nature” toolkit (www.onboardingnature.com), the research team seek to tackle the question: How can we establish new methodologies for mindset shifts that help local businesses on Texel move from an anthropocentric to an ecocentric perspective that fosters ecosystemic regeneration for Future Generations of all Life? Through participatory, art and design-based research methodologies the project explores how entrepreneurs incorporate nature’s voice into both their strategic planning and daily operations. The expected result is a guidebook with practices and materials that support reframing towards an ecocentric perspective when Onboarding Nature. Results will complement the existing “Onboarding Nature” toolkit. By the end of the project, Texel’s entrepreneurs will co-develop the tools and gained experiences to become guardians of a thriving ecosystem, including (future) humans. This initiative will serve as a scalable model for other National Parks, empowering them to adopt a similar transformative approach. Partners: • Center of Expertise Wellbeing Economy and New Entrepreneurship Avans University of Applied Sciences • Center of Expertise Digital Operations & Finance The Hague University of Applied Sciences • De Organisatie Activist, • National Park Duinen van Texel • World Ethic Forum, • Nyenrode Business University • Nature