Background Several footwear design characteristics are known to have detrimental effects on the foot. However, one characteristic that has received relatively little attention is the point where the sole flexes in the sagittal plane. Several footwear assessment forms assume that this should ideally be located directly under the metarsophalangeal joints (MTPJs), but this has not been directly evaluated. The aim of this study was therefore to assess the influence on plantar loading of different locations of the shoe sole flexion point. Method Twenty-one asymptomatic females with normal foot posture participated. Standardised shoes were incised directly underneath the metatarsophalangeal joints, proximal to the MTPJs or underneath the midfoot. The participants walked in a randomised sequence of the three shoes whilst plantar loading patterns were obtained using the Pedar® in-shoe pressure measurement system. The foot was divided into nine anatomically important masks, and peak pressure (PP), contact time (CT) and pressure time integral (PTI) were determined. A ratio of PP and PTI between MTPJ2-3/MTPJ1 was also calculated. Results Wearing the shoe with the sole flexion point located proximal to the MTPJs resulted in increased PP under MTPJ 4–5 (6.2%) and decreased PP under the medial midfoot compared to the sub-MTPJ flexion point (−8.4%). Wearing the shoe with the sole flexion point located under the midfoot resulted in decreased PP, CT and PTI in the medial and lateral hindfoot (PP: −4.2% and −5.1%, CT: −3.4% and −6.6%, PTI: −6.9% and −5.7%) and medial midfoot (PP: −5.9% CT: −2.9% PTI: −12.2%) compared to the other two shoes. Conclusion The findings of this study indicate that the location of the sole flexion point of the shoe influences plantar loading patterns during gait. Specifically, shoes with a sole flexion point located under the midfoot significantly decrease the magnitude and duration of loading under the midfoot and hindfoot, which may be indicative of an earlier heel lift.
LINK
1. We assessed the hypothesized negative correlation between the influence of multiple predators and body condition and fecundity of the European hare, from 13 areas in the Netherlands. 2. Year-round abundance of predators was estimated by hunters. We quantified predator influence as the sum of their field metabolic rates, as this sum reflects the daily food requirements of multiple individuals. We determined the ratio between body mass and hindfoot length of hares as an index of body condition and the weight of their adrenal gland as a measure of chronic exposure to stress, and we counted the number of placental scars to estimate fecundity of hares. 3. As hypothesized, we found that the sum of field metabolic rate of predators was negatively correlated with body condition and the number of placental scars, whereas it was positively related to the weight of the adrenal glands. In contrast to the sum of the field metabolic rate, the total number of predators did not or weakly affect the investigated risk responses. 4. The sum of the field metabolic rate can be a useful proxy for the influence of multiple predators and takes into account predator abundance, type, body weight, and food requirements of multiple predators. 5. With our findings, our paper contributes to a better understanding of the risk effects of multiple predators on prey fitness. Additionally, we identify a potential contributor to the decline of European hare populations.
DOCUMENT
Amsterdam Airport Schiphol has faced capacity constraints, particularly during peak periods. At the security screening checkpoint, this is due to the growing number of passengers and a shortage of security staff. To improve operating performance, there is a need to integrate newer technologies that improve passing times. This research presents a discrete event simulation (DES) model for the inclusion of a shoe scanner at the security screening checkpoint at Amsterdam Airport Schiphol. Simulation is a frequently used method to assess the influence of process changes, which, however, has not been applied for the inclusion of shoe scanners in airport security screenings yet. The simulation model can be used to assess the implementation and potential benefits of an optical shoe scanner, which is expected to lead to significant improvements in passenger throughput and a decrease in the time a passenger spends during the security screening, which could lead to improved passenger satisfaction. By leveraging DES as a tool for analysis, this study provides valuable insights for airport authorities and stakeholders aiming to optimize security screening operations and enhance passenger satisfaction.
DOCUMENT
Objectives: Improving foot orthoses (FOs) in patients with rheumatoid arthritis (RA) by using in-shoe plantar pressure measurements seems promising. The objectives of this study were to evaluate (1) the outcome on plantar pressure distribution of FOs that were adapted using in-shoe plantar pressure measurements according to a protocol and (2) the protocol feasibility. Methods: Forty-five RA patients with foot problems were included in this observational proof-of concept study. FOs were custom-made by a podiatrist according to usual care. Regions of Interest (ROIs) for plantar pressure reduction were selected. According to a protocol, usual care FOs were evaluated using in-shoe plantar pressure measurements and, if necessary, adapted. Plantar pressure–time integrals at the ROIs were compared between the following conditions: (1) no-FO versus usual care FO and (2) usual care FO versus adapted FO. Semi-structured interviews were held with patients and podiatrists to evaluate the feasibility of the protocol. Results: Adapted FOs were developed in 70% of the patients. In these patients, usual care FOs showed a mean 9% reduction in pressure–time integral at forefoot ROIs compared to no-FOs (p = 0.01). FO adaptation led to an additional mean 3% reduction in pressure–time integral (p = 0.05). The protocol was considered feasible by patients. Podiatrists considered the protocol more useful to achieve individual rather than general treatment goals. A final protocol was proposed. Conclusions: Using in-shoe plantar pressure measurements for adapting foot orthoses for patients with RA leads to a small additional plantar pressure reduction in the forefoot. Further research on the clinical relevance of this outcome is required.
DOCUMENT
BACKGROUND: The design and manufacturing of effective foot orthoses is a complex multidisciplinary problem involving biomedical and gait pattern aspects, technical material and geometric design elements as well as psychological and social contexts. This complexity contributes to the current trial-and-error and experience-based orthopedic footwear practice in which a major part of the expertise is implicit. This hampers knowledge transfer, reproducibility and innovation. OBJECTIVE/METHODS: A systematic review of literature has been performed to find evidence of explicit knowledge, quantitative guidelines and design motivations of pedorthists. RESULTS: 17 studies have been included. No consensus is found on which measurable parameters ensure proper foot and ankle functioning. Parameters suggested are: neutral foot positioning and control of rearfoot motion, maximum arch, but also tibial internal/external rotation as well as a three point force system. Also studies evaluating foot orthoses centering on the diagnosis or orthosis type find no clear guidelines for treatment or for measuring the effectiveness. CONCLUSIONS: A gap in the translation from diagnosis to a specific, customized and quantified effective orthosis design is identified. Suggested solutions are both top-down, fitting of patient data in simulations, as well as bottom-up, quantifying current practices of pedorthists in order to develop new practical guidelines and evidence-based procedures.
DOCUMENT
This conversation between Geert Lovink and Nikita Lin reflects upon our inner experiences within the global networked digital cultures. It explores the tactics, aesthetic and political, in response to the breakdowns brought by digital platforms and the possibility of creating new beginnings through persistent engagement in writing and publishing. Since 2004 Lovink is heading the Institute of Network Cultures at the Amsterdam University of Applied Sciences and is Art and Network Cultures Professor of Art and Network Cultures at University of Amsterdam’s Art History Department. The conversation takes as point of departure Lovink’s three recent books: Sad by Design: On Platform Nihilism, Stuck on the Platform: Reclaiming the Internet, and Extinction Internet: Our Inconvenient Truth Moment. Over the past 30 years, Lovink has been experimenting with the networks and the internet in his writing by developing a distinct style that dig into essays, interviews, aphorisms, sloganisms, and memes. This includes critical concepts that he has developed-such as ‘tactical media,’ ‘net criticism,' ‘sad by design,’ and ‘internet extinction’ – that people recognize, find useful and ready to apply to their own activities. For Geert Lovink, the fascinating question with writing is how to capture fast-changing real-time phenomena which means not only documenting but also leaving room for anticipation.
DOCUMENT
This paper presents a proof of concept for monitoring masonry structures using two different types of markers which are not easily noticeable by human eye but exhibit high reflection when subjected to NIR (near-infrared) wavelength of light. The first type is a retroreflective marker covered by a special tape that is opaque in visible light but translucent in NIR, while the second marker is a paint produced from infrared reflective pigments. The reflection of these markers is captured by a special camera-flash combination and processed using image processing algorithms. A series of experiments were conducted to verify their potential to monitor crack development. It is shown that the difference between the actual crack width and the measured was satisfactorily small. Besides that, the painted markers perform better than the tape markers both in terms of accuracy and precision, while their accuracy could be in the range of 0.05 mm which verifies its potential to be used for measuring cracks in masonry walls or plastered and painted masonry surfaces. The proposed method can be particularly useful for heritage structures, and especially for acute problems like foundation settlement. Another advantage of the method is that it has been designed to be used by non-technical people, so that citizen involvement is also possible in collecting data from the field.
DOCUMENT
Since an increasing amount of business decision/logic management solutions are utilized, organizations search for guidance to design such solutions. An important aspect of such a solution is the ability to guard the quality of the specified or modified business decisions and underlying business logic to ensure logical soundness. This particular capability is referred to as verification. As an increasing amount of organizations adopt the new Decision Management and Notation (DMN) standard, introduced in September 2015, it is essential that organizations are able to guard the logical soundness of their business decisions and business logic with the help of certain verification capabilities. However, the current knowledge base regarding verification as a capability is not yet researched in relation to the new DMN standard. In this paper, we re-address and - present our earlier work on the identification of 28 verification capabilities applied by the Dutch government [1]. Yet, we extended the previous research with more detailed descriptions of the related literature, findings, and results, which provide a grounded basis from which further, empirical, research on verification capabilities with regards to business decisions and business logic can be explored.
DOCUMENT
Background The plantar intrinsic foot muscles (PIFMs) have a role in dynamic functions, such as balance and propulsion, which are vital to walking. These muscles atrophy in older adults and therefore this population, which is at high risk to falling, may benefit from strengthening these muscles in order to improve or retain their gait performance. Therefore, the aim was to provide insight in the evidence for the effect of interventions anticipated to improve PIFM strength on dynamic balance control and foot function during gait in adults. Methods A systematic literature search was performed in five electronic databases. The eligibility of peer-reviewed papers, published between January 1, 2010 and July 8, 2020, reporting controlled trials and pre-post interventional studies was assessed by two reviewers independently. Results from moderate- and high-quality studies were extracted for data synthesis by summarizing the standardized mean differences (SMD). The GRADE approach was used to assess the certainty of evidence. Results Screening of 9199 records resulted in the inclusion of 11 articles of which five were included for data synthesis. Included studies were mainly performed in younger populations. Low-certainty evidence revealed the beneficial effect of PIFM strengthening exercises on vertical ground reaction force (SMD: − 0.31-0.37). Very low-certainty evidence showed that PIFM strength training improved the performance on dynamic balance testing (SMD: 0.41–1.43). There was no evidence for the effect of PIFM strengthening exercises on medial longitudinal foot arch kinematics. Conclusions This review revealed at best low-certainty evidence that PIFM strengthening exercises improve foot function during gait and very low-certainty evidence for its favorable effect on dynamic balance control. There is a need for high-quality studies that aim to investigate the effect of functional PIFM strengthening exercises in large samples of older adults. The outcome measures should be related to both fall risk and the role of the PIFMs such as propulsive forces and balance during locomotion in addition to PIFM strength measures.
MULTIFILE
Background: To facilitate adherence to adaptive pain management behaviors after interdisciplinary multimodal pain treatment, we developed a mobile health app (AGRIPPA app) that contains two behavior regulation strategies. Objective: The aims of this project are (1) to test the effectiveness of the AGRIPPA app on pain disability; (2) to determine the cost-effectiveness; and (3) to explore the levels of engagement and usability of app users. Methods: We will perform a multicenter randomized controlled trial with two parallel groups. Within the 12-month inclusion period, we plan to recruit 158 adult patients with chronic pain during the initial stage of their interdisciplinary treatment program in one of the 6 participating centers. Participants will be randomly assigned to the standard treatment condition or to the enhanced treatment condition in which they will receive the AGRIPPA app. Patients will be monitored from the start of the treatment program until 12 months posttreatment. In our primary analysis, we will evaluate the difference over time of pain-related disability between the two conditions. Other outcome measures will include health-related quality of life, illness perceptions, pain self-efficacy, app system usage data, productivity loss, and health care expenses. Results: The study was approved by the local Medical Research Ethics Committee in October 2019. As of March 20, 2020, we have recruited 88 patients. Conclusions: This study will be the first step in systematically evaluating the effectiveness and efficiency of the AGRIPPA app. After 3 years of development and feasibility testing, this formal evaluation will help determine to what extent the app will influence the maintenance of treatment gains over time. The outcomes of this trial will guide future decisions regarding uptake in clinical practice.
LINK