This paper presents a case study where a model predictive control (MPC) logic is developed for energy flexible operation of a space heating system in an educational building. A Long Short-Term Memory Neural Network (LSTM) surrogate model is trained on the output of an EnergyPlus building simulation model. This LSTM model is used within an MPC framework where a genetic algorithm is used to optimize setpoint sequences. The EnergyPlus model is used to validate the performance of the control logic. The MPC approach leads to a substantial reduction in energy consumption (7%) and energy costs (13%) with improved comfort performance. Additional energy costs savings are possible (7–16%) if a sacrifice in indoor thermal comfort is accepted. The presented method is useful for developing MPC systems in the design stages where measured data is typically not available. Additionally, this study illustrates that LSTM models are promising for MPC for buildings.
DOCUMENT
Machine learning models have proven to be reliable methods in classification tasks. However, little research has been conducted on the classification of dwelling characteristics based on smart meter and weather data before. Gaining insights into dwelling characteristics, which comprise of the type of heating system used, the number of inhabitants, and the number of solar panels installed, can be helpful in creating or improving the policies to create new dwellings at nearly zero-energy standard. This paper compares different supervised machine learning algorithms, namely Logistic Regression, Support Vector Machine, K-Nearest Neighbor, and Long-short term memory, and methods used to correctly implement these algorithms. These methods include data pre-processing, model validation, and evaluation. Smart meter data, which was used to train several machine learning algorithms, was provided by Groene Mient. The models that were generated by the algorithms were compared on their performance. The results showed that the Long-short term memory performed the best with 96% accuracy. Cross Validation was used to validate the models, where 80% of the data was used for training purposes and 20% was used for testing purposes. Evaluation metrics were used to produce classification reports, which indicates that the Long-short term memory outperforms the compared models on the evaluation metrics for this specific problem.
DOCUMENT
A considerable amount of literature has been published on Corporate Reputation, Branding and Brand Image. These studies are extensive and focus particularly on questionnaires and statistical analysis. Although extensive research has been carried out, no single study was found which attempted to predict corporate reputation performance based on data collected from media sources. To perform this task, a biLSTM Neural Network extended with attention mechanism was utilized. The advantages of this architecture are that it obtains excellent performance for NLP tasks. The state-of-the-art designed model achieves highly competitive results, F1 scores around 72%, accuracy of 92% and loss around 20%.
DOCUMENT