Spectral imaging has many applications, from methane detection using satellites to disease detection on crops. However, spectral cameras remain a costly solution ranging from 10 thousand to 100 thousand euros for the hardware alone. Here, we present a low-cost multispectral camera (LC-MSC) with 64 LEDs in eight different colors and a monochrome camera with a hardware cost of 340 euros. Our prototype reproduces spectra accurately when compared to a reference spectrometer to within the spectral width of the LEDs used and the ±1σ variation over the surface of ceramic reference tiles. The mean absolute difference in reflectance is an overestimate of 0.03 for the LC-MSC as compared to a spectrometer, due to the spectral shape of the tiles. In environmental light levels of 0.5 W m−2 (bright artificial indoor lighting) our approach shows an increase in noise, but still faithfully reproduces discrete reflectance spectra over 400 nm–1000 nm. Our approach is limited in its application by LED bandwidth and availability of specific LED wavelengths. However, unlike with conventional spectral cameras, the pixel pitch of the camera itself is not limited, providing higher image resolution than typical high-end multi- and hyperspectral cameras. For sample conditions where LED illumination bands provide suitable spectral information, our LC-MSC is an interesting low-cost alternative approach to spectral imaging.
MULTIFILE
We have developed an SI-traceable narrow-band tunable radiance source based on an optical parametric oscillator (OPO) and an integrating sphere for the calibration of spectroradiometers. The source is calibrated with a reference detector over the ultraviolet/visible spectral range with an uncertainty of <1%. As a case study, a CubeSat spectroradiometer has been calibrated for radiance over its operating range from 370 nm to 480 nm. To validate the results, the instrument has also been calibrated with a traditional setup based on a diffuser and an FEL lamp. Both routes show good agreement within the combined measurement uncertainty. The OPO-based approach could be an interesting alternative to the traditional method, not only because of reduced measurement uncertainty, but also because it directly allows for wavelength calibration and characterization of the instrumental spectral response function and stray light effects, which could reduce calibration time and cost.
Purpose:The International Commission on Illumination (CIE) recommends researchers to investigate a widevariety of behavioural and health outcomes. However, researchers often investigate only a part of occupationalhealth (OH) in relation to light. A literature study (2002–2017) regarding the relationship between office lightingconditions and OH was performed to identify gaps and methodological issues.Method:The OH outcomes investigated in this paper were grouped according to the International Classificationof Diseases and analysed per category: physical and physiological health, mental health, eye health, sleep param-eters and visual comfort.Results:Findings from the literature study (20 eligible papers) showed that all OH aspects were mostly but notexclusively measured subjectively. Furthermore, most studies investigated only a fraction of office lighting par-ameters and OH aspects.Conclusions:It seems that Correlated Colour Temperature (CCT) and illuminance mainly correlate with OH.However, this may also be explained by gaps and methodological issues in studies described in eligible papers.Based on the literature study, an overview was composed elucidating gaps and methodological issues of officelighting and OH studies. It can be used to design and target the purpose of light and health research.