Background: Recently, research focus has shifted to the combination of all 24-h movement behaviors (physical activity, sedentary behavior and sleep) instead of each behavior separately. Yet, no reliable and valid proxy-report tools exist to assess all these behaviors in 0–4-year-old children. By involving end-users (parents) and key stakeholders (researchers, professionals working with young children), this mixed-methods study aimed to 1) develop a mobile application (app)-based proxy-report tool to assess 24-h movement behaviors in 0–4-year-olds, and 2) examine its content validity. Methods: First, we used concept mapping to identify activities 0–4-year-olds engage in. Parents (n = 58) and professionals working with young children (n = 21) generated a list of activities, sorted related activities, and rated the frequency children perform these activities. Second, using multidimensional scaling and cluster analysis, we created activity categories based on the sorted activities of the participants. Third, we developed the My Little Moves app in collaboration with a software developer. Finally, we examined the content validity of the app with parents (n = 14) and researchers (n = 6) using focus groups and individual interviews. Results: The app has a time-use format in which parents proxy-report the activities of their child, using eight activity categories: personal care, eating/drinking, active transport, passive transport, playing, screen use, sitting/lying calmly, and sleeping. Categories are clarified by providing examples of children’s activities. Additionally, 1–4 follow-up questions collect information on intensity (e.g., active or calm), posture, and/or context (e.g., location) of the activity. Parents and researchers considered filling in the app as feasible, taking 10–30 min per day. The activity categories were considered comprehensive, but alternative examples for several activity categories were suggested to increase the comprehensibility and relevance. Some follow-up questions were considered less relevant. These suggestions were adopted in the second version of the My Little Moves app. Conclusions: Involving end-users and key stakeholders in the development of the My Little Moves app resulted in a tailored tool to assess 24-h movement behaviors in 0–4-year-olds with adequate content validity. Future studies are needed to evaluate other measurement properties of the app.
MULTIFILE
UNLABELLED: Reaching movements are initiated by activity of the prime mover, i.e. the first activated arm muscle. We aimed to investigate the relationship between prime mover activity and kinematics of reaching in typically developing (TD) infants in supine and sitting position. Fourteen infants were assessed at 4 and 6 months during reaching in supine and supported sitting. Kinematics and EMG-activity of deltoid, pectoralis major, biceps (BB) and triceps brachii were recorded. Kinematic analysis focused on number of movement units (MUs) and transport MU (MU with longest duration). Prime mover use was variable, but at 6 months a dominance of BB emerged in both testing conditions. Kinematics were also variable, but with increasing age the number of MU decreased and the relative proportion of the transport MU increased. BB as prime mover at 6 months was related to a larger transport MU.CONCLUSION: Between 4 and 6 months BB prime mover dominance emerges which is related to relatively efficient reaching characteristics.
A wheelchair undergoes vibrations while traveling over obstacles and uneven surfaces, resulting in whole body vibration of the person sitting in the wheelchair. According to clinicians, people with spinal cord injury (SCI) report that vibration evokes spasticity. The relatively new Spinergy wheelchair wheels (Spinergy, Inc; San Diego, California) are claimed to absorb more road shock then conventional steel-spoked wheelchair wheels. If this claim is true, this wheel might also reduce spasticity in people with SCI. We hypothesized that Spinergy wheels would absorb vibration, reduce perceived spasticity, and improve comfort in individuals with SCI more than standard steel-spoked wheels. To test this hypothesis, 22 nondisabled subjects performed a passive ramp test so that we could more closely examine the dampening characteristics of the Spinergy versus traditional wheels. Furthermore, 13 subjects with SCI performed an obstacle test with both wheel types. Vibrations were measured with accelerometers, and spasticity and comfort were assessed with subject-reported visual analog scales. The results of the study showed that, within the current experimental setup, the Spinergy wheels neither reduced vibration or perceived spasticity nor improved comfort in people with SCI more than the conventional steel-spoked wheels.
LINK