Muscle fiber-type specific expression of UCP3-protein is reported here for the firts time, using immunofluorescence microscopy
Background & aims: Accurate diagnosis of sarcopenia requires evaluation of muscle quality, which refers to the amount of fat infiltration in muscle tissue. In this study, we aim to investigate whether we can independently predict mortality risk in transcatheter aortic valve implantation (TAVI) patients, using automatic deep learning algorithms to assess muscle quality on procedural computed tomography (CT) scans. Methods: This study included 1199 patients with severe aortic stenosis who underwent transcatheter aortic valve implantation (TAVI) between January 2010 and January 2020. A procedural CT scan was performed as part of the preprocedural-TAVI evaluation, and the scans were analyzed using deep-learning-based software to automatically determine skeletal muscle density (SMD) and intermuscular adipose tissue (IMAT). The association of SMD and IMAT with all-cause mortality was analyzed using a Cox regression model, adjusted for other known mortality predictors, including muscle mass. Results: The mean age of the participants was 80 ± 7 years, 53% were female. The median observation time was 1084 days, and the overall mortality rate was 39%. We found that the lowest tertile of muscle quality, as determined by SMD, was associated with an increased risk of mortality (HR 1.40 [95%CI: 1.15–1.70], p < 0.01). Similarly, low muscle quality as defined by high IMAT in the lowest tertile was also associated with increased mortality risk (HR 1.24 [95%CI: 1.01–1.52], p = 0.04). Conclusions: Our findings suggest that deep learning-assessed low muscle quality, as indicated by fat infiltration in muscle tissue, is a practical, useful and independent predictor of mortality after TAVI.
Background & aims: Low muscle mass and -quality on ICU admission, as assessed by muscle area and -density on CT-scanning at lumbar level 3 (L3), are associated with increased mortality. However, CT-scan analysis is not feasible for standard care. Bioelectrical impedance analysis (BIA) assesses body composition by incorporating the raw measurements resistance, reactance, and phase angle in equations. Our purpose was to compare BIA- and CT-derived muscle mass, to determine whether BIA identified the patients with low skeletal muscle area on CT-scan, and to determine the relation between raw BIA and raw CT measurements. Methods: This prospective observational study included adult intensive care patients with an abdominal CT-scan. CT-scans were analysed at L3 level for skeletal muscle area (cm2) and skeletal muscle density (Hounsfield Units). Muscle area was converted to muscle mass (kg) using the Shen equation (MMCT). BIA was performed within 72 h of the CT-scan. BIA-derived muscle mass was calculated by three equations: Talluri (MMTalluri), Janssen (MMJanssen), and Kyle (MMKyle). To compare BIA- and CT-derived muscle mass correlations, bias, and limits of agreement were calculated. To test whether BIA identifies low skeletal muscle area on CT-scan, ROC-curves were constructed. Furthermore, raw BIA and CT measurements, were correlated and raw CT-measurements were compared between groups with normal and low phase angle. Results: 110 patients were included. Mean age 59 ± 17 years, mean APACHE II score 17 (11–25); 68% male. MMTalluri and MMJanssen were significantly higher (36.0 ± 9.9 kg and 31.5 ± 7.8 kg, respectively) and MMKyle significantly lower (25.2 ± 5.6 kg) than MMCT (29.2 ± 6.7 kg). For all BIA-derived muscle mass equations, a proportional bias was apparent with increasing disagreement at higher muscle mass. MMTalluri correlated strongest with CT-derived muscle mass (r = 0.834, p < 0.001) and had good discriminative capacity to identify patients with low skeletal muscle area on CT-scan (AUC: 0.919 for males; 0.912 for females). Of the raw measurements, phase angle and skeletal muscle density correlated best (r = 0.701, p < 0.001). CT-derived skeletal muscle area and -density were significantly lower in patients with low compared to normal phase angle. Conclusions: Although correlated, absolute values of BIA- and CT-derived muscle mass disagree, especially in the high muscle mass range. However, BIA and CT identified the same critically ill population with low skeletal muscle area on CT-scan. Furthermore, low phase angle corresponded to low skeletal muscle area and -density. Trial registration: ClinicalTrials.gov (NCT02555670).