Understanding sludge rheology and optimizing equipment performance is crucial for energy efficiency in wastewater treatment plants (WWTPs). This study examined sludge rheology after thermal hydrolysis pretreatment (THP) at 60, 80, and 120 ◦C for 2 h, followed by anaerobic digestion (AD) at 37 ◦C for 20 days, and assessed impacts on pump and agitator performance. Post-treatment, sludge showed reduced viscosity and improved flowability, indicated by changes in Herschel-Bulkley parameters, enhancing pump and agitator efficiency, particularly at 120 ◦C. These rheological improvements were correlated to the solubilization of sludge components after THP and solids reduction after AD, highlighting the interconnectedness of rheology and treatment outcomes. Despite high heat demands, an energy balance showed that THP scenarios, especially at 120 ◦C, had lower energy requirements for pumps and agitators, leading to energy savings without increased heat consumption. These findings underscore the influence of rheological changes in improving energy efficiency in WWTPs.
DOCUMENT
Global society is confronted with various challenges: climate change should be mitigated, and society should adapt to the impacts of climate change, resources will become scarcer and hence resources should be used more efficiently and recovered after use, the growing world population and its growing wealth create unprecedented emissions of pollutants, threatening public health, wildlife and biodiversity. This paper provides an overview of the challenges and risks for sewage systems, next to some opportunities and chances that these developments pose. Some of the challenges are emerging from climate change and resource scarcity, others come from the challenges emerging from stricter regulation of emissions. It also presents risks and threats from within the system, next to external influences which may affect the surroundings of the sewage systems. It finally reflects on barriers to respond to these challenges. http://dx.doi.org/10.13044/j.sdewes.d6.0231 LinkedIn: https://www.linkedin.com/in/sabineeijlander/ https://www.linkedin.com/in/karel-mulder-163aa96/
MULTIFILE
Innovations are required in urban infrastructures due to the pressing needs for mitigating climate change and prevent resource depletion. In order to address the slow pace of innovation in urban systems, this paper analyses factors involved in attempts to introduce novel sanitary systems. Today new requirements are important: sanitary systems should have an optimal energy/climate performance, with recovery of resources, and with fewer emissions. Anaerobic digestion has been suggested as an alternative to current aerobic waste water treatment processes. This paper presents an overview of attempts to introduce novel anaerobic sanitation systems for domestic sanitation. The paper identifies main factors that contributed to a premature termination of such attempts. Especially smaller scale anaerobic sanitation systems will probably not be able to compete economically with traditional sewage treatment. However, anaerobic treatment has various advantages for mitigating climate change, removing persistent chemicals, and for the transition to a circular economy. The paper concludes that loss avoidance, both in the sewage system and in the waste water treatment plants, should play a key role in determining experiments that could lead to a transition in sanitation. http://dx.doi.org/10.13044/j.sdewes.d6.0214 LinkedIn: https://www.linkedin.com/in/karel-mulder-163aa96/
MULTIFILE