At this moment, charging your electric vehicle is common good, however smart charging is still a novelty in the developing phase with many unknowns. A smart charging system monitors, manages and restricts the charging process to optimize energy consumption. The need for, and advantages of smart charging electric vehicles are clear cut from the perspective of the government, energy suppliers and sustainability goals. But what about the advantages and disadvantages for the people who drive electric cars? What opportunities are there to support the goals of the user to make smart charging desirable for them? By means of qualitative Co-design methods the underlying motives of early adaptors for joining a smart charging service were uncovered. This was done by first sensitizing the user about their current and past encounters with smart charging to make them more aware of their everyday experiences. This was followed by another generative method, journey mapping and in-depth interviews to uncover the core values that drove them to participate in a smart charging system. Finally, during two co-design sessions, the participants formed groups in which they were challenged to design the future of smart charging guided by their core values. The three main findings are as follows. Firstly, participants are looking for ways to make their sustainable behaviour visible and measurable for themselves. For example, the money they saved by using the smart charging system was often used as a scoreboard, more than it was about theactual money. Secondly, they were more willing to participate in smart charging and discharging (sending energy from their vehicle back to the grid) if it had a direct positive effect on someone close to them. For example, a retiree stated that he was more than willing to share the energy of his car with a neighbouring family in which both young parents work, making them unable to charge their vehicles at times when renewable energy is available in abundance. The third and last finding is interrelated with this, it is about setting the right example. The early adopters want to show people close to them that they are making an effort to do the right thing. This is known as the law of proximity and is well illustrated by a participant that bought a second-hand, first-generation Nissan Leaf with a range of just 80 km in the summer and even less in winter. It isn’t about buying the best or most convenient car but about showing the children that sometimes it takes effort to do the right thing. These results suggest that there are clear opportunities for suppliers of smart EV charging services to make it more desirable for users, with other incentives than the now commonly used method of saving money. The main takeaway is that early adopters have a desire for their sustainable behaviour to be more visible and tangible for themselves and their social environment. The results have been translated into preliminary design proposals in which the law of proximity is applied.
DOCUMENT
As the Dutch electric vehicle (EV) fleet continues to expand, so will the amount of charging sessions increase. This expanding demand for energy will add on to the already existing strain on the grid, primarily during peak hours on workdays in the early morning and evening. This growing energy demand requires new methods to handle the charging of EVs, to distribute the available energy in the most effective way. Therefore, a large number of ‘smart charging’ initiatives have recently been developed, whereby the charging session of the EV is based on the conditions of the energy grid. However, the term smart charging is used for a variety of smart charging initiatives, often involving different optimization strategies and charging processes. For most practitioners, as well as academics, it is hard to distinguish the large range of smart charging initiatives initiated in recent years, how they differentiate from each other and how they contribute to a smarter charging infrastructure. This paper has the objective to provide an overview of smart charging initiatives in the Netherlands and develop a categorization of smart charging initiatives regarding objectives, proposed measures and intended contributions. We will do so by looking at initiatives that focus on smart charging at a household level, investigating the smart charging possibilities for EV owners who either make use of a private or (semi-)public charging point. The different smart charging initiatives will be analyzed and explicated in combination with a literature study, focusing on the different optimization strategies and requirements to smart charge an electric vehicle.
DOCUMENT
In order to apply smart charging it is key to be able to forecast the connection and charging time of charging sessions at the start of the connection. For, if you know how long a session will last, one can assign an appropriate smart charging strategy for that session. For instance by postponing the charging to a moment with lower energy prices or more renewable energy generation. This study presents the work of SIMULAAD in predicting charging and connection times.
DOCUMENT
At request of the MRA-E, G4 and ElaadNL HvA is researching the potential of Smart Charging. In this blog Youssef el Bouhassani pinpoints this potential.
LINK
A smart charging profile was implemented on 39 public charging stations in Amsterdam on which the current level available for electric vehicle (EV) charging was limited during peak hours on the electricity grid (07:00-08:30 and 17:00-20:00) and was increased during the rest of the day. The impact of this profile was measured on three indicators: average charging power, amount of transferred energy and share of positively and negatively affected sessions. The results are distinguished for different categories of electric vehicles with different charging characteristics (number of phases and maximum current). The results depend heavily on this categorisation and are a realistic measurement of the impact of smart charging under real world conditions. The average charging power increased as a result of the new profile and a reduction in the amount of transferred energy was detected during the evening hours, causing outstanding demand which was solved at an accelerated rate after limitations were lifted. For the whole population, 4% of the sessions were positively affected (charged a larger volume of energy) and 5% were negatively affected. These numbers are dominated by the large share of plug-in hybrid electric vehicles (PHEVs) in Amsterdam which are technically not able to profit from the higher current levels. For new generation electric vehicles, 14% of the sessions were positively affected and the percentage of negatively affected sessions was 5%.
DOCUMENT
Summary:A novel Smart Charging strategy, based on low base allowances per charger combined with 1. clustering of chargers on the same part of the grid and 2. dynamic non guaranteed allowance, is presented in this paper. This manner of Smart Charging will allow more than 3 times the amount of chargers to be installed in the existing grid, even when the grid is already congested. The system also improves the usage of available flexibility in EV charging compared to other Smart Charging strategies. The required algorithms are tested on public chargers in Amsterdam, in some of the most intensely used parts of the Dutch grid.
DOCUMENT
This Vehicle-to-City (V2C) Operational Pilot, Flexpower, was deployed in two phases in Amsterdam from the beginning of March 2017 up to the end of May 2020 [1]. The first phase, defined as Flexpower 1, ran from March 2017 until end August 2018. The second phase, Flexpower 2, encompasses May 2019 – May 2020. The pilot is based on the architecture of the low voltage distribution system in Amsterdam, which is managed by Liander. Improving the utilisation rate of the electrical network is one of the goals of this project. The Flexpower pilot is not about the installation of new equipment but about using a smarter way to use it to push the limits of the system. The Flexpower pilot was used to test, improve and scale a smart charging solution which reduces the power available for charging EVs when the stress on the electricity network is already high and then allow faster charging when the available capacity is sufficient. For this purpose, capacity profiles were created.
DOCUMENT
While the Municipality of Amsterdam wants to expand the electric vehicle public charging infrastructure to reach carbon-neutral objectives, the Distribution System Operator cannot allow new charging stations where low-voltage transformers are reaching their maximum capacity. To solve this situation, a smart charging project called Flexpower is being tested in some districts. Charging power is limited during peak times to avoid grid congestion and, therefore, enable the expansion of charging infrastructure while deferring grid investments. This work simulates the implementation of the Flexpower strategy with high penetration of electric vehicles, considering dynamic and local power limits, to assess the impact on both the satisfaction of electric vehicle users and the business model of the Charging Point Operator. A stochastic approach, based on Gaussian Mixture Models, has been used to model different profiles of electric vehicle users using data from the Amsterdam public electric vehicle charging infrastructure. Several key performance indicators have been defined to assess the impact of such charging limitations on the different stakeholders. The results show that, while Amsterdam’s existing public charging infrastructure can host just twice the current electric vehicle demand, the application of Flexpower will enable the growth in charging stations without requiring grid upgrades. Even with 7 times more charging sessions, Flexpower could provide a power peak reduction of 57% while supplying 98% of the total energy required by electric vehicle users.
DOCUMENT
The mass adoption of Electric Vehicles (EVs) might raise pressure on the power system, especially during peak hours. Therefore, there is a need for delayed charging. However, to optimize the charging system, the progression of charging from an empty battery until a full battery of the EVs based on realworld data needs to be analyzed. Many researchers currently view this charging profile as a static load and ignore the actual charging behavior during the charging session. This study investigates how different factors influence the charging profile of individual EVs based on real-world data of charging sessionsin the Netherlands, enabling optimization analysis of EV smart charging schemes.
DOCUMENT
Charging infrastructure development is vital for the adoption of electric vehicles (EVs). Yet, on the surface, there seems to be significant disagreement about when, how and which kind of charging infrastructure should be developed and most importantly, for what reasons. These reasons are concealed in the stakeholders’ perspective on the future. Differences in stakeholders’ perspectives regarding expectations on the future EV charging infrastructure may be expected, but should they prove irreconcilable they may stall the roll-out. However, to date, it remains unknown what these stakeholders’ perspectives are, how they are aligned across stakeholders, which topics are heavily debated and which are agreed upon. This study uses Q-methodology to identify different perspectives on the future of roll-out of EV charging infrastructure. The analysis shows that stakeholders mainly differ in the extent fast charging should play an important role, the degree smart charging should be the standard in charging and how much government should intervene with infrastructure roll-out. There is a consensus on the importance of interoperability of charging stations. The four different perspectives were supported across different stakeholders, which supports the idea that perspectives are not strongly linked to the stakeholders’ interests.
DOCUMENT