This Vehicle-to-City (V2C) Operational Pilot, Flexpower, was deployed in two phases in Amsterdam from the beginning of March 2017 up to the end of May 2020 [1]. The first phase, defined as Flexpower 1, ran from March 2017 until end August 2018. The second phase, Flexpower 2, encompasses May 2019 – May 2020. The pilot is based on the architecture of the low voltage distribution system in Amsterdam, which is managed by Liander. Improving the utilisation rate of the electrical network is one of the goals of this project. The Flexpower pilot is not about the installation of new equipment but about using a smarter way to use it to push the limits of the system. The Flexpower pilot was used to test, improve and scale a smart charging solution which reduces the power available for charging EVs when the stress on the electricity network is already high and then allow faster charging when the available capacity is sufficient. For this purpose, capacity profiles were created.
Underutilised charging stations can be a bottleneck in the swift transition to electric mobility. This study is the first to research cooperative behaviour at public charging stations as a way to address improved usage of public charging stations. It does so by viewing public charging stations as a common-pool resource and explains cooperative behaviour from an evolutionary perspective. Current behaviour is analysed using a survey (313 useful responses) and an analysis of large dataset (2.1 million charging sessions) on the use of public charging infrastructure in Amsterdam, The Netherlands. In such a way it identifies the potential, drivers and possible obstacles that electric vehicle drivers experience when cooperating with other drivers to optimally make use of existing infrastructure. Results show that the intention to show direct reciprocal charging behaviour is high among the respondents, although this could be limited if the battery did not reach full or sufficient state-of-charge at the moment of the request. Intention to show direct reciprocal behaviour is mediated by kin and network effects.
MULTIFILE
The Netherlands is a frontrunner in the field of public charging infrastructure, having a high number of public charging stations per electric vehicle (EV) in the world. During the early years of adoption (2012-2015) a large percentage of the EV fleet were Plugin Hybrid Electric Vehicles (PHEV)due to the subsidy scheme at that time. With an increasing number of Full Electric Vehicles (FEVs) on the market and a current subsidy scheme for FEV only, a transition of the EV fleet from PHEV to FEV is expected. This is hypothesized to have effect on charging behavior of the complete fleet, reason to understand better how PHEVs and FEVs differ in charging behavior and how this impacts charging infrastructure usage. In this paper, the effects of the transition of PHEV to FEV is simulated by extending an existing Agent Based Model. Results show important effects of this transitionon charging infrastructure performance.