The potential of technological innovation to address urban sustainability has been widely acknowledged over the last decade. Across cities globally, local governments have engaged in partnership arrangements with the private sector to initiate pilot projects for urban innovation, typically co-funded by innovation subsidies. A recurring challenge however is how to scale up successful projects and generate more impact. Drawing on the business and management literature, we introduce the concept of organizational ambidexterity to provide a novel theoretical perspective on sustainable urban innovations. We examine how to align exploration (i.e., test and experiment with digital technologies, products, platforms, and services) with exploitation (i.e., reaping the financial benefits from digital technologies by bringing products, platforms, and services to the market), rooted in the literature on smart cities. We conclude that the concept of ambidexterity, as elaborated in the business and management literature and practiced by firms, can be translated to the city policy domain, provided that upscaling or exploitation in a smart city context also includes the translation of insights from urban experiments, successful or not, into new routines, regulations, protocols, and stakeholder/citizen engagement methods.
The role of smart cities in order to improve older people’s quality of life, sustainability and opportunities, accessibility, mobility, and connectivity is increasing and acknowledged in public policy and private sector strategies in countries all over the world. Smart cities are one of the technological-driven initiatives that may help create an age-friendly city. Few research studies have analysed emerging countries in terms of their national strategies on smart or age-friendly cities. In this study, Romania which is predicted to become one of the most ageing countries in the European Union is used as a case study. Through document analysis, current initiatives at the local, regional, and national level addressing the issue of smart and age-friendly cities in Romania are investigated. In addition, a case study is presented to indicate possible ways of the smart cities initiatives to target and involve older adults. The role of different stakeholders is analysed in terms of whether initiatives are fragmentary or sustainable over time, and the importance of some key factors, such as private–public partnerships and transnational bodies. The results are discussed revealing the particularities of the smart cities initiatives in Romania in the time frame 2012–2020, which to date, have limited connection to the age-friendly cities agenda. Based on the findings, a set of recommendations are formulated to move the agenda forward. CC-BY Original article: https://doi.org/10.3390/ijerph17145202 (This article belongs to the Special Issue Feature Papers "Age-Friendly Cities & Communities: State of the Art and Future Perspectives") https://www.dehaagsehogeschool.nl/onderzoek/lectoraten/details/urban-ageing#over-het-lectoraat
Urban regions are confronted with huge sustainability challenges. Their future depends to a large extent on our ability to promote sustainable urban development. However, sustainability challenges in cities are inherently complex and need integrated, multidisciplinary solutions. This textbook on Smart Sustainable Cities responds to that challenge by capturing theories, methods and tools relevant for researching smart sustainable cities and developing solutions for sustainability challenges within cities. This book thereby serves the great need among students and practitioners to understand the multifaceted nature of Smart Sustainable Cities, to build upon acknowledged cross-disciplinary analytical and design approaches, and to learn how to apply such approaches. Each chapter presents a practical approach to urban sustainability, a relevant case study, and exercises and assignments for students to master the topic. Topics include: Smart Sustainable Cities: an introduction; Systemic Design Thinking; Probing the Future for Smart Sustainable Cities; Social Design of Smart Sustainable Cities; Urban Psychology of Smart Sustainable Cities; Behavioural Change for Smart Sustainable Cities; Healthy Urban Living; Towards Energy Neutral Neighbourhoods; Carbon Footprinting and Accounting; Circular Economy: material and value flows in the city; Promoting Sustainable Urban Mobility; Canvas Business Modelling; Big Data Analytics; Social Value Innovation: from concept to practice.
MUSE supports the CIVITAS Community to increase its impact on urban mobility policy making and advance it to a higher level of knowledge, exchange, and sustainability.As the current Coordination and Support Action for the CIVITAS Initiative, MUSE primarily engages in support activities to boost the impact of CIVITAS Community activities on sustainable urban mobility policy. Its main objectives are to:- Act as a destination for knowledge developed by the CIVITAS Community over the past twenty years.- Expand and strengthen relationships between cities and stakeholders at all levels.- Support the enrichment of the wider urban mobility community by providing learning opportunities.Through these goals, the CIVITAS Initiative strives to support the mobility and transport goals of the European Commission, and in turn those in the European Green Deal.Breda University of Applied Sciences is the task leader of Task 7.3: Exploitation of the Mobility Educational Network and Task 7.4: Mobility Powered by Youth Facilitation.
De installatiebranche staat voor een aantal grote uitdagingen. Het personeel vergrijst en minder jongeren kiezen voor een baan in de installatiebranche. Tegelijkertijd vindt er een inhoudelijke transitie plaats, mede gedreven door technologische innovaties van prestatiegericht installeren naar mensgericht installeren. Het betekent dat installaties in gebouwen niet alleen energiezuinig behoren te zijn maar ook behoren zij bij te dragen aan het welzijn en de gezondheid van de gebruikers. Ook het huidige personeel zal op een andere manier moeten gaan werken dan gewend te zijn. Grotere bedrijven zetten meer en meer opkomende technologieën in, maar hoe snel kan het MKB hierin meebewegen? En zullen deze ontwikkelingen meer jongeren naar de branche trekken? Doel Het OMTECH_IDGB project onderzoekt in hoeverre het MKB in de installatiebranche gereed is om te kunnen werken met opkomende technologieën, zoals bijvoorbeeld AI en AR. Vragen zijn: Hoe opereert het MKB in de installatiebranche bij het gebruik van AI en AR? Wat zijn aantrekkelijke use cases voor het gebruik van opkomende technologieën? Hoe krijgen wij onze mensen, maar ook jongeren gereed om te werken in een digitale werkomgeving? Resultaten Overzicht van use cases, animatie over werken met AI en AR in de installatiebranche en een RAAKpro vooraanmelding over inzet van AI en AR in de installatiebranche. Looptijd 01 november 2020 - 31 mei 2021 Aanpak Literatuurstudie/deskresearch naar opkomende technologieën, AI en AR, zowel binnen als buiten de installatiebranche. Inventariseren van het gebruik en inzet van opkomende technologieën in de installatiebranche. Ophalen van ‘use cases’ in de praktijk d.m.v. interviews. Bijeenkomsten met de praktijk. In een samenstelling van professionals, ontwikkelaars, branche organisaties, MKB partijen en groot bedrijven op dit thema. Met als doel om het verder uitwerken en scherp stellen van de vraag te bewerkstelligen. In dit project wordt tevens samengewerkt met het Centre of Expertise Smart Sustainable Cities.
The livability of the cities and attractiveness of our environment can be improved by smarter choices for mobility products and travel modes. A change from current car-dependent lifestyles towards the use of healthier and less polluted transport modes, such as cycling, is needed. With awareness campaigns, cycling facilities and cycle infrastructure, the use of the bicycle will be stimulated. But which campaigns are effective? Can we stimulate cycling by adding cycling facilities along the cycle path? How can we design the best cycle infrastructure for a region? And what impact does good cycle infrastructure have on the increase of cycling?To find answers for these questions and come up with a future approach to stimulate bicycle use, BUas is participating in the InterReg V NWE-project CHIPS; Cycle Highways Innovation for smarter People transport and Spatial planning. Together with the city of Tilburg and other partners from The Netherlands, Belgium, Germany and United Kingdom we explore and demonstrate infrastructural improvements and tackle crucial elements related to engaging users and successful promotion of cycle highways. BUas is responsible for the monitoring and evaluation of the project. To measure the impact and effectiveness of cycle highway innovations we use Cyclespex and Cycleprint.With Cyclespex a virtual living lab is created which we will use to test several readability and wayfinding measures for cycle infrastructure. Cyclespex gives us the opportunity to test different scenario’s in virtual reality that will help us to make decisions about the final solution that will be realized on the cycle highway. Cycleprint will be used to develop a monitoring dashboard where municipalities of cities can easily monitor and evaluate the local bicycle use.