The growth in urban population and economic upturnis leading to higher demand for construction, repairand renovation works in cities. Houses, public utilities,retail spaces, offices and infrastructure need toadapt to cope with the increasing number of residentsand visitors, urban functions and changing standards.Construction projects contribute to more attractive,sustainable and economically viable urban areas oncethey are finished. However, transport activities relatedto construction works have negative impacts on thesurrounding community if not handled appropriately.It is estimated that 15 to 20 percent of heavy goodsvehicles in cities are related to construction, and 30to 40 percent of light commercial vans [1]. In the citiesstudied in the CIVIC project, construction-relatedtransport was found to be one of the biggest challengesto improving sustainability. Smarter, cleaner and saferconstruction logistics solutions in urban areas areneeded for environmental, societal and economicreasons. However, in many European cities and metropolitanareas the sense of urgency is not evident or alack of knowledge is creating passivity.
DOCUMENT
Drones have been verified as the camera of 2024 due to the enormous exponential growth in terms of the relevant technologies and applications such as smart agriculture, transportation, inspection, logistics, surveillance and interaction. Therefore, the commercial solutions to deploy drones in different working places have become a crucial demand for companies. Warehouses are one of the most promising industrial domains to utilize drones to automate different operations such as inventory scanning, goods transportation to the delivery lines, area monitoring on demand and so on. On the other hands, deploying drones (or even mobile robots) in such challenging environment needs to enable accurate state estimation in terms of position and orientation to allow autonomous navigation. This is because GPS signals are not available in warehouses due to the obstruction by the closed-sky areas and the signal deflection by structures. Vision-based positioning systems are the most promising techniques to achieve reliable position estimation in indoor environments. This is because of using low-cost sensors (cameras), the utilization of dense environmental features and the possibilities to operate in indoor/outdoor areas. Therefore, this proposal aims to address a crucial question for industrial applications with our industrial partners to explore limitations and develop solutions towards robust state estimation of drones in challenging environments such as warehouses and greenhouses. The results of this project will be used as the baseline to develop other navigation technologies towards full autonomous deployment of drones such as mapping, localization, docking and maneuvering to safely deploy drones in GPS-denied areas.
The developments of digitalization and automation in freight transport and logistics are expected to speed-up the realization of an adaptive, seamless, connected and sustainable logistics system. CATALYST determines the potential and impact of Connected Automated Transport (CAT) by testing and implementing solutions in a real-world environment. We experiment on smart yards and connected corridors, to answer research questions regarding supply chain integration, users, infrastructure, data and policy. Results are translated to overarching lessons on CAT implementations, and shared with potential users and related communities. This way, CATALYST helps logistic partners throughout the supply chain prepare for CAT and accelerates innovation.
The developments of digitalization and automation in freight transport and logistics are expected to speed-up the realization of an adaptive, seamless, connected and sustainable logistics system. CATALYST determines the potential and impact of Connected Automated Transport (CAT) by testing and implementing solutions in a real-world environment. We experiment on smart yards and connected corridors, to answer research questions regarding supply chain integration, users, infrastructure, data and policy. Results are translated to overarching lessons on CAT implementations, and shared with potential users and related communities. This way, CATALYST helps logistic partners throughout the supply chain prepare for CAT and accelerates innovation.