Mobility hubs facilitate multimodal transport and have the potential to improve the accessibility and usability of new mobility services. However, in the context of increasing digitalisation, using mobility hubs requires digital literacy or even owning a smartphone. This constraint may result in the exclusion of current and potential users. Digital kiosks might prove to be a solution, as they can facilitate the use of the services found at mobility hubs. Nevertheless, knowledge of how digital kiosks may improve the experience of disadvantaged groups remains limited in the literature. As part of the SmartHubs project, a field test with a digital kiosk was conducted with 105 participants in Brussels (Belgium) and Rotterdam (The Netherlands) to investigate the intention to use it and its usability in the context of mobility hubs. This study adopted a mixed methods approach, combining participant observation and questionnaire surveys. Firstly, participants were asked to accomplish seven tasks with the digital kiosk while being observed by the researchers. Finally, assisted questionnaire surveys were conducted with the same participants, including close-ended, open-ended and socio-demographic questions. The results offer insights into the experience of the users of a digital kiosk in a mobility hub and the differences across specific social groups. These findings may be relevant for decision-makers and practitioners working in urban mobility on subjects such as mobility hubs and shared mobility, and for user interface developers concerned with the inclusivity of digital kiosks.
LINK
The role of smart cities in order to improve older people’s quality of life, sustainability and opportunities, accessibility, mobility, and connectivity is increasing and acknowledged in public policy and private sector strategies in countries all over the world. Smart cities are one of the technological-driven initiatives that may help create an age-friendly city. Few research studies have analysed emerging countries in terms of their national strategies on smart or age-friendly cities. In this study, Romania which is predicted to become one of the most ageing countries in the European Union is used as a case study. Through document analysis, current initiatives at the local, regional, and national level addressing the issue of smart and age-friendly cities in Romania are investigated. In addition, a case study is presented to indicate possible ways of the smart cities initiatives to target and involve older adults. The role of different stakeholders is analysed in terms of whether initiatives are fragmentary or sustainable over time, and the importance of some key factors, such as private–public partnerships and transnational bodies. The results are discussed revealing the particularities of the smart cities initiatives in Romania in the time frame 2012–2020, which to date, have limited connection to the age-friendly cities agenda. Based on the findings, a set of recommendations are formulated to move the agenda forward. CC-BY Original article: https://doi.org/10.3390/ijerph17145202 (This article belongs to the Special Issue Feature Papers "Age-Friendly Cities & Communities: State of the Art and Future Perspectives") https://www.dehaagsehogeschool.nl/onderzoek/lectoraten/details/urban-ageing#over-het-lectoraat
MULTIFILE
Author supplied: Within the Netherlands the interest for sustainability is slowly growing. However, most organizations are still lagging behind in implementing sustainability as part of their strategy and in developing performance indicators to track their progress; not only in profit organizations but in higher education as well, even though sustainability has been on the agenda of the higher educational sector since the 1992 Earth Summit in Rio, progress is slow. Currently most initiatives in higher education in the Netherlands have been made in the greening of IT (e.g. more energy efficient hardware) and in implementing sustainability as a competence in curricula. However if we look at the operations (the day to day processes and activities) of Dutch institutions for higher education we just see minor advances. In order to determine what the best practices are in implementing sustainable processes, We have done research in the Netherlands and based on the results we have developed a framework for the smart campus of tomorrow. The research approach consisted of a literature study, interviews with experts on sustainability (both in higher education and in other sectors), and in an expert workshop. Based on our research we propose the concept of a Smart Green Campus that integrates new models of learning, smart sharing of resources and the use of buildings and transport (in relation to different forms of education and energy efficiency). Flipping‐the‐classroom, blended learning, e‐learning and web lectures are part of the new models of learning that should enable a more time and place independent form of education. With regard to smart sharing of resources we have found best practices on sharing IT‐storage capacity among universities, making educational resources freely available, sharing of information on classroom availability and possibilities of traveling together. A Smart Green Campus is (or at least is trying to be) energy neutral and therefore has an energy building management system that continuously monitors the energy performance of buildings on the campus. And the design of the interior of the buildings is better suited to the new forms of education and learning described above. The integrated concept of Smart Green Campus enables less travel to and from the campus. This is important as in the Netherlands about 60% of the CO2 footprint of a higher educational institute is related to mobility. Furthermore we advise that the campus is in itself an object for study by students and researchers and sustainability should be made an integral part of the attitude of all stakeholders related to the Smart Green Campus. The Smart Green Campus concept provides a blueprint that Dutch institutions in higher education can use in developing their own sustainability strategy. Best practices are shared and can be implemented across different institutions thereby realizing not only a more sustainable environment but also changing the attitude that students (the professionals of tomorrow) and staff have towards sustainability.
MUSE supports the CIVITAS Community to increase its impact on urban mobility policy making and advance it to a higher level of knowledge, exchange, and sustainability.As the current Coordination and Support Action for the CIVITAS Initiative, MUSE primarily engages in support activities to boost the impact of CIVITAS Community activities on sustainable urban mobility policy. Its main objectives are to:- Act as a destination for knowledge developed by the CIVITAS Community over the past twenty years.- Expand and strengthen relationships between cities and stakeholders at all levels.- Support the enrichment of the wider urban mobility community by providing learning opportunities.Through these goals, the CIVITAS Initiative strives to support the mobility and transport goals of the European Commission, and in turn those in the European Green Deal.Breda University of Applied Sciences is the task leader of Task 7.3: Exploitation of the Mobility Educational Network and Task 7.4: Mobility Powered by Youth Facilitation.
The European creative visual industry is undergoing rapid technological development, demanding solid initiatives to maintain a competitive position in the marketplace. AVENUE, a pan-European network of Centres of Vocational Excellence, addresses this need through a collaboration of five independent significant ecosystems, each with a smart specialisation. AVENUE will conduct qualified industry-relevant research to assess, analyse, and conclude on the immediate need for professional training and educational development. The primary objective of AVENUE is to present opportunities for immediate professional and vocational training, while innovating teaching and learning methods in formal education, to empower students and professionals in content creation, entrepreneurship, and innovation, while supporting sustainability and healthy working environments. AVENUE will result in a systematised upgrade of workforce to address the demand for new skills arising from rapid technological development. Additionally, it will transform the formal education within the five participating VETs, making them able to transition from traditional artistic education to delivering skills, mindsets and technological competencies demanded by a commercial market. AVENUE facilitates mobility, networking and introduces a wide range of training formats that enable effective training within and across the five ecosystems. A significant portion of the online training is Open Access, allowing professionals from across Europe to upgrade their skills in various processes and disciplines. The result of AVENUE will be a deep-rooted partnership between five strong ecosystems, collaborating to elevate the European industry. More than 2000 professionals, employees, students, and young talents will benefit from relevant and immediate upgrading of competencies and skills, ensuring that the five European ecosystems remain at the forefront of innovation and competitiveness in the creative visual industry.
The livability of the cities and attractiveness of our environment can be improved by smarter choices for mobility products and travel modes. A change from current car-dependent lifestyles towards the use of healthier and less polluted transport modes, such as cycling, is needed. With awareness campaigns, cycling facilities and cycle infrastructure, the use of the bicycle will be stimulated. But which campaigns are effective? Can we stimulate cycling by adding cycling facilities along the cycle path? How can we design the best cycle infrastructure for a region? And what impact does good cycle infrastructure have on the increase of cycling?To find answers for these questions and come up with a future approach to stimulate bicycle use, BUas is participating in the InterReg V NWE-project CHIPS; Cycle Highways Innovation for smarter People transport and Spatial planning. Together with the city of Tilburg and other partners from The Netherlands, Belgium, Germany and United Kingdom we explore and demonstrate infrastructural improvements and tackle crucial elements related to engaging users and successful promotion of cycle highways. BUas is responsible for the monitoring and evaluation of the project. To measure the impact and effectiveness of cycle highway innovations we use Cyclespex and Cycleprint.With Cyclespex a virtual living lab is created which we will use to test several readability and wayfinding measures for cycle infrastructure. Cyclespex gives us the opportunity to test different scenario’s in virtual reality that will help us to make decisions about the final solution that will be realized on the cycle highway. Cycleprint will be used to develop a monitoring dashboard where municipalities of cities can easily monitor and evaluate the local bicycle use.