Background: Innovative technologies such as game consoles and smart toys used with games or playful approaches have proven to be successful and attractive in providing effective and motivating hand therapy for children with cerebral palsy (CP). Thus, there is an increased interest in designing and implementing interventions that can improve the well-being of these children. However, to understand how and why these interventions are motivating children, we need a better understanding of the playful elements of technology-supported hand therapy.Objective: This scoping review aims to identify the playful elements and the innovative technologies currently used in hand therapy for children with CP.Methods: We included studies that design or evaluate interventions for children with CP that use innovative technologies with game or play strategies. Data were extracted and analyzed based on the type of technology, description of the system, and playful elements according to the Lenses of Play, a play design toolkit. A total of 31 studies were included in the analysis.Results: Overall, 54 papers were included in the analysis. The results showed high use of consumer technologies in hand therapy for children with CP. Although several studies have used a combination of consumer technologies with therapeutic-specific technologies, only a few studies focused on the exclusive use of therapeutic-specific technologies. To analyze the playfulness of these interventions that make use of innovative technologies, we focused our review on 3 lenses of play: Open-ended Play, where it was found that the characteristics of ludus, such as a structured form of play and defined goals and rules, were the most common, whereas strategies that relate to paidia were less common. The most commonly used Forms of Play were physical or active form and games with rules. Finally, the most popular Playful experiences were control, challenge, and competition.Conclusions: The inventory and analysis of innovative technology and playful elements provided in this study can be a starting point for new developments of fun and engaging tools to assist hand therapy for children with CP.
To achieve the “well below 2 degrees” targets, a new ecosystem needs to be defined where citizens become more active, co-managing with relevant stakeholders, the government, and third parties. This means moving from the traditional concept of citizens-as-consumers towards energy citizenship. Positive Energy Districts (PEDs) will be the test-bed area where this transformation will take place through social, technological, and governance innovation. This paper focuses on benefits and barriers towards energy citizenships and gathers a diverse set of experiences for the definition of PEDs and Local Energy Markets from the Horizon2020 Smart Cities and Communities projects: Making City, Pocityf, and Atelier.
Our current smart society, where problems and frictions are smoothed out with smart, often invisible technology like AI and smart sensors, calls for designers who unravel and open the smart fabric. Societies are not malleable, and moreover, a smooth society without rough edges is neither desirable nor livable. In this paper we argue for designing friction to enhance a more nuanced debate of smart cities in which conflicting values are better expressed. Based on our experiences with the Moral Design Game, an adversarial design activity, we came to understand the value of creating tangible vessels to highlight conflict and dipartite feelings surrounding smart cities.
LINK
Het RAAK-mkb project Smart Mobility is uitgevoerd door het lectoraat Automotive Control van Fontys hogeschool Automotive Engineering. Binnen het project is een living lab ontwikkeld voor onderzoek en ontwikkeling op het gebied van autonoom en coöperatief rijden. Omdat het lectoraat in het voorjaar van 2015 is gestopt, is verdere ontwikkeling van dit living lab voor onderwijs en onderzoek moeizaam verlopen. Met dit project is het mogelijk het living lab verder in te zetten voor onderwijsdoeleinden binnen het curriculum van Automotive Engineering en in kaart te brengen van de mogelijkheden voor vervolgonderzoek in samenwerking met de beroepspraktijk bij het lectoraat Future Power Train. Het living lab bestaat uit een auto (Toyota Prius) voorzien van sensoren, instrumentatie en controlesystemen waarmee de autonome en coöperatieve rijfuncties gerealiseerd kunnen worden. Het living lab wordt nu reeds gebruikt als development platform voor een studententeam van HBO en TU studenten (www.ateam.nl). Het Top-up project maakt het mogelijk dit living lab ook in het tweede leerjaar in te zetten als leermiddel.