The aim of this paper is to design and test a smartphone application which supports personalized running experiences for less experienced runners. As a result of a multidisciplinary three-step design approach Inspirun was developed. Inspirun is a personalized running-application for Android smartphones that aims to fill the gap between running on your own (static) schedule, and having a personal trainer that accommodates the schedule to your needs and profile. With the use of GPS and Bluetooth heart rate monitor support, a user's progress gets tracked. The application adjusts the training schedule after each training session, motivating the runner without a real life coach. Results from three user studies are promising; participants were very satisfied with the personalized approach, both in the profiling and de adaptation of their training scheme.
Just-in-time adaptive intervention (JITAI) has gained attention recently and previous studies have indicated that it is an effective strategy in the field of mobile healthcare intervention. Identifying the right moment for the intervention is a crucial component. In this paper the reinforcement learning (RL) technique has been used in a smartphone exercise application to promote physical activity. This RL model determines the ‘right’ time to deliver a restricted number of notifications adaptively, with respect to users’ temporary context information (i.e., time and calendar). A four-week trial study was conducted to examine the feasibility of our model with real target users. JITAI reminders were sent by the RL model in the fourth week of the intervention, while the participants could only access the app’s other functionalities during the first 3 weeks. Eleven target users registered for this study, and the data from 7 participants using the application for 4 weeks and receiving the intervening reminders were analyzed. Not only were the reaction behaviors of users after receiving the reminders analyzed from the application data, but the user experience with the reminders was also explored in a questionnaire and exit interviews. The results show that 83.3% reminders sent at adaptive moments were able to elicit user reaction within 50 min, and 66.7% of physical activities in the intervention week were performed within 5 h of the delivery of a reminder. Our findings indicated the usability of the RL model, while the timing of the moments to deliver reminders can be further improved based on lessons learned.
Massafabricage in de (MKB) maakindustrie is aan het veranderen in flexibele fabricage en assemblage van kleine series, klantspecifieke onderdelen en eindproducten. Hiervoor zijn nieuwe systemen voor het MKB nodig, waarin robots en mensen samen kunnen werken en die zich snel kunnen aanpassen aan nieuwe productieomstandigheden met lage opstartkosten. De ambitie van het project ?(G)een Moer Aan!? is om het herconfigureren van een robotsysteem voor een nieuwe taak in een productieomgeving net zo eenvoudig en snel te maken als het gebruik van een smartphone. Zo?n benadering biedt kansen om de skills van de operator te benutten. De operator kent immers zijn processen en de robot wordt zijn hulpje. Op vraag van betrokken mkb partners is de focus gelegd op een repeterende productiehandeling die in veel sectoren voorkomt en die relatief veel arbeidstijd kost: het indraaien van moeren en bouten in een object. De centrale onderzoeksvraag van het project luidt: Hoe kan een operator een robot eenvoudig, snel en veilig inleren om assemblage handelingen te verrichten voor het snel en robuust verbinden van bouten, moeren en ringen met objecten? Resultaat van dit praktijkgerichte onderzoeksproject is een algemeen bruikbare en gevalideerde ontwerpmethodiek voor de opzet van een gebruiksvriendelijke user interface van een boutmontagerobot op de werkvloer. Door slim gebruik van geïntegreerde inzet van CAD productinformatie, vision technologie en compliant (meegaand) gripping en placing wordt de robot zo veel als mogelijk vooraf automatisch geconfigureerd. Het projectconsortium dat het onderzoek gaat uitvoeren bestaat uit: " 13 bedrijven (12 mkb) actief als toeleverancier, system integrator of gebruiker op het terrein van industriële robotica (Yaskawa, ABB, Smart Robotics, Hupico, Festo, CSi, Demcon, Heemskerk Innovate, WWA, Van Schijndel Metaal, Van Beek, Tegema en Zest Innovate); " Hogescholen Fontys (penvoerder), Avans, Utrecht en NHL; " Kennisinstellingen TNO en DIFFER; " Coöperaties Brainport Industries, FEDA en Koninklijke Metaalunie; " De gemeente Eindhoven is betrokken als partner in de klankbordgroep. De gemeente ondersteunt het belang van dit project voor behoud en verbetering van arbeidsplaatsen in de maakindustrie. Er zullen circa 20 (docent)onderzoekers van de hogescholen en ongeveer 80 studenten betrokken worden bij dit project, die in de vorm van stages en afstudeeronderzoeken werken aan interessante vraagstukken direct afkomstig uit de beroepspraktijk. Naast genoemde meerwaarde voor het bedrijfsleven beoogt het project een verdere verankering van kennis en kunde in onderwijs en lectoraten en een vergroting van de kwaliteit van docenten en afstudeerders.
De fashion-industrie is in transitie, nu consumenten steeds meer online zoeken, kopen en communiceren. De meeste retailers hebben inmiddels een webshop gerealiseerd, maar inzicht ontbreekt hoe de fysieke winkel levensvatbaar te maken en houden. Dit betekent in de praktijk dat lastig is om fysieke winkels open te houden hetgeen in veel steden leidt tot teloorgang van winkelstraten en –gebieden. Ook hebben retailers onvoldoende handvatten om de omni-channel consument goed te herkennen en te benaderen en de verschillende kanalen goed op elkaar te laten aansluiten. Veel retailers hebben behoefte aan goede informatie op de winkelvloer over producten en klanten. Graag zouden ze snel willen weten wat consumenten in het verleden hebben gekocht, of ze de nieuwsbrief ontvangen, welke producten er online of in andere filialen nog beschikbaar zijn. Daar kan in een verkoopgesprek op worden ingespeeld. De technologische oplossingen zijn daarvoor beschikbaar, maar deze worden nog maar mondjesmaat gebruikt. Daar waar ze wel beschikbaar zijn, weten medewerkers niet altijd goed hoe ze bijvoorbeeld een medewerkersapp optimaal gebruiken en maken consumenten weinig gebruik van bijvoorbeeld loyalty apps op hun smartphone. Daarnaast bestaat er bij veel retailers wel de wil om te innoveren, maar moeten er eerst barrières worden beslecht. De beschikbare technologie moet zich liefst al in een testsituatie hebben bewezen en men heeft behoefte aan praktische handvatten hoe de technologie optimaal in te zetten. Om tot innovatie in de branche te komen is het daarom nodig om in samenwerking met enkele innovatieve retailers, technologiebedrijven en kennisinstellingen de innovatie markt-fähig te maken. Dit project heeft als doel om een bijdrage te leveren aan de duurzaamheid van de fashion-industrie door relevante klanttechnologie geschikt te maken voor marktintroductie, alsmede de toegevoegde waarde van deze technologie te onderzoeken voor de branche.
De technische en economische levensduur van auto’s verschilt. Een goed onderhouden auto met dieselmotor uit het bouwjaar 2000 kan technisch perfect functioneren. De economische levensduur van diezelfde auto is echter beperkt bij introductie van strenge milieuzones. Bij de introductie en verplichtstelling van geavanceerde rijtaakondersteunende systemen (ADAS) zien we iets soortgelijks. Hoewel de auto technisch gezien goed functioneert kunnen verouderde software, algorithmes en sensoren leiden tot een beperkte levensduur van de gehele auto. Voorbeelden: - Jeep gehackt: verouderde veiligheidsprotocollen in de software en hardware beperkten de economische levensduur. - Actieve Cruise Control: sensoren/radars van verouderde systemen leiden tot beperkte functionaliteit en gebruikersacceptatie. - Tesla: bij bestaande auto’s worden verouderde sensoren uitgeschakeld waardoor functies uitvallen. In 2019 heeft de EU een verplichting opgelegd aan automobielfabrikanten om 20 nieuwe ADAS in te bouwen in nieuw te ontwikkelen auto’s, ongeacht prijsklasse. De mate waarin deze ADAS de economische levensduur van de auto beperkt is echter nog onvoldoende onderzocht. In deze KIEM wordt dit onderzocht en wordt tevens de parallel getrokken met de mobiele telefonie; beide maken gebruik van moderne sensoren en software. We vergelijken ontwerpeisen van telefoons (levensduur van gemiddeld 2,5 jaar) met de eisen aan moderne ADAS met dezelfde sensoren (levensduur tot 20 jaar). De centrale vraag luidt daarom: Wat is de mogelijke impact van veroudering van ADAS op de economische levensduur van voertuigen en welke lessen kunnen we leren uit de onderliggende ontwerpprincipes van ADAS en Smartphones? De vraag wordt beantwoord door (i) literatuuronderzoek naar de veroudering van ADAS (ii) Interviews met ontwerpers van ADAS, leveranciers van retro-fit systemen en ontwerpers van mobiele telefoons en (iii) vergelijkend rij-onderzoek naar het functioneren van ADAS in auto’s van verschillende leeftijd en prijsklassen.