For successful energy transitions, social acceptance of innovative technologies is essential. In order to determine the contributing factors, the acceptance of bio-digestion in The Netherlands was analyzed. A discourse analysis of 200 newspaper articles was conducted to answer the question: how do different parties speak about bio-digestion? Discourse analysis is suitable for making underlying concerns and dilemmas of people more explicit. Thus, one can be more in line with people’s sensitivities in communication and policy, both of which play a crucial role in facilitating transition. The results show that there is little support for bio-digesters in residential areas. The relation between municipalities and residents is poor and asymmetric. The municipalities emphasize their role as experts, thus reinforcing incomprehension. Furthermore, they do not take responsibility and avoid confrontations, contradicting research on the significance of discussions when dealing with innovations (Leeuwis & Aarts, 2011).
DOCUMENT
Airborne wind energy (AWE) systems use tethered flying devices to harvest higher-altitude winds to produce electricity. For the success of the technology, it is crucial to understand how people perceive and respond to it. If concerns about the technology are not taken seriously, it could delay or prevent implementation, resulting in increased costs for project developers and a lower contribution to renewable energy targets. This literature review assessed the current state of knowledge on the social acceptance of AWE. A systematic literature search led to the identification of 40 relevant publications that were reviewed. The literature expected that the safety, visibility, acoustic emissions, ecological impacts, and the siting of AWE systems impact to which extent the technology will be accepted. The reviewed literature viewed the social acceptance of AWE optimistically but lacked scientific evidence to back up its claims. It seemed to overlook the fact that the impact of AWE’s characteristics (e.g., visibility) on people’s responses will also depend on a range of situational and psychological factors (e.g., the planning process, the community’s trust in project developers). Therefore, empirical social science research is needed to increase the field’s understanding of the acceptance of AWE and thereby facilitate development and deployment.
DOCUMENT
Smart glasses were perceived to be potentially revolutionary for healthcare, however, there is only limited research on the acceptance and social implications of smart glasses in healthcare. This study aims to get a better insight into the theoretical foundations and the purpose was to identify themes regarding adoption, mediation, and the use of smart glasses from the perspective of healthcare professionals. A qualitative research design with focus groups was used to collect data. Three focus groups with 22 participants were conducted. Data were analyzed using content analysis. Our analysis revealed six overarching themes related to the anticipated adoption of smart glasses: knowledge, innovativeness, use cases, ethical issues, persuasion, and attitude. Nine themes were found related to anticipated mediation and use of smart glasses: attention, emotions, social influences, design, context, camera use, risks, comparisons to known products, and expected reaction and might influence the acceptance of smart glasses.
MULTIFILE
Coastal nourishments, where sand from offshore is placed near or at the beach, are nowadays a key coastal protection method for narrow beaches and hinterlands worldwide. Recent sea level rise projections and the increasing involvement of multiple stakeholders in adaptation strategies have resulted in a desire for nourishment solutions that fit a larger geographical scale (O 10 km) and a longer time horizon (O decades). Dutch frontrunner pilot experiments such as the Sandmotor and Ameland inlet nourishment, as well as the Hondsbossche Dunes coastal reinforcement project have all been implemented from this perspective, with the specific aim to encompass solutions that fit in a renewed climate-resilient coastal protection strategy. By capitalizing on recent large-scale nourishments, the proposed Coastal landSCAPE project C-SCAPE will employ and advance the newly developed Dynamic Adaptive Policy Pathways (DAPP) approach to construct a sustainable long-term nourishment strategy in the face of an uncertain future, linking climate and landscape scales to benefits for nature and society. Novel long-term sandy solutions will be examined using this pathways method, identifying tipping points that may exist if distinct strategies are being continued. Crucial elements for the construction of adaptive pathways are 1) a clear view on the long-term feasibility of different nourishment alternatives, and 2) solid, science-based quantification methods for integral evaluation of the social, economic, morphological and ecological outcomes of various pathways. As currently both elements are lacking, we propose to erect a Living Lab for Climate Adaptation within the C-SCAPE project. In this Living Lab, specific attention is paid to the socio-economic implications of the nourished landscape, as we examine how morphological and ecological development of the large-scale nourishment strategies and their design choices (e.g. concentrated vs alongshore uniform, subaqueous vs subaerial, geomorphological features like artificial lagoons) translate to social acceptance.
Traffic accidents are a severe public health problem worldwide, accounting for approximately 1.35 million deaths annually. Besides the loss of life, the social costs (accidents, congestion, and environmental damage) are significant. In the Netherlands, in 2018, these social costs were approximately € 28 billion, in which traffic accidents alone accounted for € 17 billion. Experts believe that Automated Driving Systems (ADS) can significantly reduce these traffic fatalities and injuries. For this reason, the European Union mandates several ADS in new vehicles from 2022 onwards. However, the utility of ADS still proves to present difficulties, and their acceptance among drivers is generally low. As of now, ADS only supports drivers within their pre-defined safety and comfort margins without considering individual drivers’ preferences, limiting ADS in behaving and interacting naturally with drivers and other road users. Thereby, drivers are susceptible to distraction (when out-of-the-loop), cannot monitor the traffic environment nor supervise the ADS adequately. These aspects induce the gap between drivers and ADS, raising doubts about ADS’ usefulness among drivers and, subsequently, affecting ADS acceptance and usage by drivers. To resolve this issue, the HUBRIS Phase-2 consortium of expert academic and industry partners aims at developing a self-learning high-level control system, namely, Human Counterpart, to bridge the gap between drivers and ADS. The central research question of this research is: How to develop and demonstrate a human counterpart system that can enable socially responsible human-like behaviour for automated driving systems? HUBRIS Phase-2 will result in the development of the human counterpart system to improve the trust and acceptance of drivers regarding ADS. In this RAAK-PRO project, the development of this system is validated in two use-cases: I. Highway: non-professional drivers; II. Distribution Centre: professional drivers.
Traffic accidents are a severe public health problem worldwide, accounting for approximately 1.35 million deaths annually. Besides the loss of life, the social costs (accidents, congestion, and environmental damage) are significant. In the Netherlands, in 2018, these social costs were approximately € 28 billion, in which traffic accidents alone accounted for € 17 billion. Experts believe that Automated Driving Systems (ADS) can significantly reduce these traffic fatalities and injuries. For this reason, the European Union mandates several ADS in new vehicles from 2022 onwards. However, the utility of ADS still proves to present difficulties, and their acceptance among drivers is generally low.As of now, ADS only supports drivers within their pre-defined safety and comfort margins without considering individual drivers’ preferences, limiting ADS in behaving and interacting naturally with drivers and other road users. Thereby, drivers are susceptible to distraction (when out-of-the-loop), cannot monitor the traffic environment nor supervise the ADS adequately. These aspects induce the gap between drivers and ADS, raising doubts about ADS’ usefulness among drivers and, subsequently, affecting ADS acceptance and usage by drivers.To resolve this issue, the HUBRIS Phase-2 consortium of expert academic and industry partners aims at developing a self-learning high-level control system, namely, Human Counterpart, to bridge the gap between drivers and ADS. The central research question of this research is:How to develop and demonstrate a human counterpart system that can enable socially responsible human-like behaviour for automated driving systems?HUBRIS Phase-2 will result in the development of the human counterpart system to improve the trust and acceptance of drivers regarding ADS. In this RAAK-PRO project, the development of this system is validated in two use-cases:I. Highway: non-professional drivers;II. Distribution Centre: professional drivers.Collaborative partners:Bielefeld University of Applied Sciences, Bricklog B.V., Goudappel B.V., HaskoningDHV Nederland B.V., Rhine-Waal University of Applied Sciences, Rijkswaterstaat, Saxion, Sencure B.V., Siemens Industry Software Netherlands B.V., Smits Opleidingen B.V., Stichting Innovatiecentrum Verkeer en Logistiek, TNO Den Haag, TU Delft, University of Twente, V-Tron B.V., XL Businesspark Twente.