Publinova logo

Zoekresultaten

Producten 1.506

product

Thermodynamics, environmental damage cost, exergoeconomic, life cycle, and exergoenvironmental analyses of a JP-8 fueled turbodiesel aviation engine at take-off phase

The objective of this study is to evaluate the energetic, exergetic, sustainability, economic and environmental performances of a 4-cylinder turbodiesel aviation engine (TdAE) used on unmanned aerial vehicles for the take-off operation mode to assess the system with large aspects. Energy efficiency of the system is found as 43.158%, while exergy efficiency 40.655%. Thermoeconomic analysis gives information about the costs of the inlet and outlet energy and exergy flows of the engine. Hourly levelized total cost flow of the TdAE is found as 21.036 $/h, when the hourly fuel cost flow of the engine is found as 30.328 $/h. The waste exergy cost parameter is determined as 0.0144 MJ/h/$ from exergy cost-energy-mass (EXCEM) analysis, while it is estimated as 14.043 MJ/$ from modified-EXCEM analysis. Environmental damage cost analysis evaluates the cost formation of the exhaust emissions. The total environmental damage cost of the TdAE is computed as 12.895 $/h whilst specific environmental damage cost is determined as 0.054 $/MJ for 494.145 MJ/h TdAE power production. It is assessed that the main contributors to the environmental impact rate of the TdAE are the fuel consumption and the formation pollutants of combustion reaction.

PDF

Thermodynamics, environmental damage cost, exergoeconomic, life cycle, and exergoenvironmental analyses of a JP-8 fueled turbodiesel aviation engine at take-off phase
product

Effectiveness and cost-effectiveness of an optimized process of providing assistive technology for impaired upper extremity function

Background: Impaired upper extremity function due to muscle paresis or paralysis has a major impact on independent living and quality of life (QoL). Assistive technology (AT) for upper extremity function (i.e. dynamic arm supports and robotic arms) can increase a client’s independence. Previous studies revealed that clients often use AT not to their full potential, due to suboptimal provision of these devices in usual care. Objective: To optimize the process of providing AT for impaired upper extremity function and to evaluate its (cost-)effectiveness compared with care as usual. Methods: Development of a protocol to guide the AT provision process in an optimized way according to generic Dutch guidelines; a quasi-experimental study with non-randomized, consecutive inclusion of a control group (n = 48) receiving care as usual and of an intervention group (optimized provision process) (n = 48); and a cost-effectiveness and cost-utility analysis from societal perspective will be performed. The primary outcome is clients’ satisfaction with the AT and related services, measured with the Quebec User Evaluation of Satisfaction with AT (Dutch version; D-QUEST). Secondary outcomes comprise complaints of the upper extremity, restrictions in activities, QoL, medical consumption and societal cost. Measurements are taken at baseline and at 3, 6 and 9 months follow-up.

PDF

Effectiveness and cost-effectiveness of an optimized process of providing assistive technology for impaired upper extremity function
product

Implementation of an interprofessional collaboration in practice program

Background: Due to multimorbidity and geriatric problems, older people often require both psychosocial and medical care. Collaboration between medical and social professionals is a prerequisite to deliver high-quality care for community-living older people. Effective, safe, and person-centered care relies on skilled interprofessional collaboration and practice. Little is known about interprofessional education to increase interprofessional collaboration in practice (IPCP) in the context of community care for older people. This study examines the feasibility of the implementation of an IPCP program in three community districts and determines its potential to increase interprofessional collaboration between primary healthcare professionals caring for older people. Method: A feasibility study was conducted to determine the acceptability and feasibility of data collection and analysis regarding interprofessional collaboration in network development. A questionnaire was used to measure the learning experience and the acquisition of knowledge and skills regarding the program. Network development was assessed by distributing a social network survey among professionals attending the program as well as professionals not attending the program at baseline and 5.5 months after. Network development was determined by calculating the number, reciprocity, value, and diversity of contacts between professionals using social network analysis. Results: The IPCP program was found to be instructive and the knowledge and skills gained were applicable in practice. Social network analysis was feasible to conduct and revealed a spill-over effect regarding network development. Program participants, as well as non-program participants, had larger, more reciprocal, and more diverse interprofessional networks than they did before the program. Conclusions: This study showed the feasibility of implementing an IPCP program in terms of acceptability, feasibility of data collection, and social network analysis to measure network development, and indicated potential to increase interprofessional collaboration between primary healthcare professionals. Both program participants and non-program participants developed a larger, more collaborative, and diverse interprofessional network.

PDF

Implementation of an interprofessional collaboration in practice program

Personen 1

persoon

Marcel van der Werf

PhD Candidate

Projecten 3

project

Application of wastewater treatment systems to minimize the water consumption of a pulp mill located in the Rio Doce basin (WatMin).

Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.

Afgerond
project

INnovations for eXtreme Climatic EventS

INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.INXCES will develop new innovative technological methods for risk assessment and mitigation of extreme hydroclimatic events and optimization of urban water-dependent ecosystem services at the catchment level, for a spectrum of rainfall events. It is widely acknowledged that extreme events such as floods and droughts are an increasing challenge, particularly in urban areas. The frequency and intensity of floods and droughts pose challenges for economic and social development, negatively affecting the quality of life of urban populations. Prevention and mitigation of the consequences of hydroclimatic extreme events are dependent on the time scale. Floods are typically a consequence of intense rainfall events with short duration. In relation to prolonged droughts however, a much slower timescale needs to be considered, connected to groundwater level reductions, desiccation and negative consequences for growing conditions and potential ground – and building stability.INXCES will take a holistic spatial and temporal approach to the urban water balance at a catchment scale and perform technical-scientific research to assess, mitigate and build resilience in cities against extreme hydroclimatic events with nature-based solutions.INXCES will use and enhance innovative 3D terrain analysis and visualization technology coupled with state-of-the-art satellite remote sensing to develop cost-effective risk assessment tools for urban flooding, aquifer recharge, ground stability and subsidence. INXCES will develop quick scan tools that will help decision makers and other actors to improve the understanding of urban and peri-urban terrains and identify options for cost effective implementation of water management solutions that reduce the negative impacts of extreme events, maximize beneficial uses of rainwater and stormwater for small to intermediate events and provide long-term resilience in light of future climate changes. The INXCES approach optimizes the multiple benefits of urban ecosystems, thereby stimulating widespread implementation of nature-based solutions on the urban catchment scale.

Afgerond
project

Smart Cycling Futures

Cycling booms in many Dutch cities. While smart cycling innovations promise to increase cycling’s modal share in the (peri-)urban transport system even further, little is understood of their impact or cost and benefit. The “Smart Cycling Futures (SCF)” program investigates how smart cycling innovations ─ including ICT-enabled cycling innovations, infrastructures, and social innovations like new business models ─ contribute to more resilient and liveable Dutch urban regions. Cycling innovations benefit urban regions in terms of accessibility, equality, health, liveability, and decreasing CO2-emissions when socially well embedded. To facilitate a transition to a sustainable future that respond to pressing issues, the SCF research project runs urban living labs in close collaboration with key stakeholders to develop transdisciplinary insights in the conditions needed for upscaling smart-cycling initiatives. Each living lab involving real-world experiments responds to the urgent challenges that urban regions and their stakeholders face today. The proposed research sub-programs focus on institutional dynamics, entrepreneurial strategies, governance and the socio-spatial conditions for smart cycling. Going beyond analysis, we also assess the economic, social, and spatial impacts of cycling on urban regions. The research program brings together four Dutch regions through academic institutions (three general and one applied-science universities); governmental authorities (urban and regional); and market players (innovative entrepreneurs). Together, they answer practice-based questions in a transdisciplinary and problem-oriented fashion. Research in the four regions generates both region-specific and universally applicable findings. Finally, SCF uses its strong research-practice network around cycling to co-create the research and run an outreach program.

Afgerond