Presentation.
The Procurement and Supply of hospital isolation gowns (IGs) pose significant challenges, including the potential for sudden increases in demand, the necessity of maintaining high-quality gowns, and the complexity of the supply process. One potential solution to these challenges is the investment in reusable IGs, which may seem financially infeasible due to their initial purchasing price. However, it can provide long-term financial and environmental benefits. In this research, a Simulation Optimization (SO) framework is utilized to model and analyze various product portfolio selection strategies, considering both financial and environmental perspectives, and to determine the optimal strategy for meeting both financial and environmental objectives. The proposed strategy is implemented to the problem based on obtained Life Cycle Assessment and market data.
In the Dutch armed forces clothing sizes are determined using 3D body scans. To evaluate if the predicted size based on the scan analysis matches the best fit, 35 male soldiers fitted a combat jacket and combat pants. It was shown that the predicted jacket size was slightly too large. Therefore, an adjustment was proposed. The predicted and preferred pant size matched rather well. We further investigated discrepancies between predicted and preferred sizes using virtual fitting analysis. Colour maps showing the difference between garment and body circumference illustrated that some soldiers selected a garment size that was obviously too small or too large. In order to minimize the effect of personal preference and maximize standardize ease, we recommend to maintain the current size prediction (with minor corrections for jackets) and use virtual fitting selectively as a control measure.
The main challenge addressed in FTMAAS (Freight Traffic Management As A Service) is the integration of logistics and traffic management information. Digitalization is progressing quickly in both areas, but operational connections and synergies are scarce. The mission of the FTMAAS Living Lab is to connect these two subsystems by developing, implementing and testing integrating software applications that benefit both worlds. The Living Lab focuses on the International Freight Corridor South (Rotterdam-Venlo) and manages 3 main running cases and 6 research subprojects. Research focuses on questions of value creation, analytics and optimization of both logistics and network level traffic management.
The main challenge addressed in FTMAAS (Freight Traffic Management As A Service) is the integration of logistics and traffic management information. Digitalization is progressing quickly in both areas, but operational connections and synergies are scarce. The mission of the FTMAAS Living Lab is to connect these two subsystems by developing, implementing and testing integrating software applications that benefit both worlds. The Living Lab focuses on the International Freight Corridor South (Rotterdam-Venlo) and manages 3 main running cases and 6 research subprojects. Research focuses on questions of value creation, analytics and optimization of both logistics and network level traffic management.