Publinova logo

Zoekresultaten

Producten 224

product

XRF quick-scan mapping for heavy metal pollutants in SuDS: a methodological approach

Sustainable urban drainage systems (SuDS) such as swales are designed to collect, store and infiltrate a large amount of surface runoff water during heavy rainfall. Stormwater is known to transport pollutants, such as particle-bound heavy metals, which are known to often accumulate in the topsoil. In this study, a portable XRF instrument is used to provide in situ spatial characterization of soil pollutants. The method uses portable XRF measurements of heavy metals along profiles with set intervals (1 meter) to cover the swale with cross-sections, across the inlet, the deepest point and the outlet. Soil samples are collected, and the In-Situ measurements are verified by the results from laboratory analyses. Stormwater is here shown to be the transporting media for the pollutants, so it is of importance to investigate areas most prone to flooding and infiltration. This quick scan method is time and cost-efficient, easy to execute and the results are comparable to any known (inter)national threshold criteria for polluted soils. The results are of great importance for all stakeholders in cities that are involved in climate adaptation and implementing green infrastructure in urban areas. However, too little is still known about the long-term functioning of the soil-based SuDS facilities.

MULTIFILE

product

Developments to come to a circular construction economy; experiences in facilitating a local soil and sand depot

The impact of the construction industry on the natural environment is severe, natural areas are changedinto predominantly hard solid surfaces, the energy use in the built environment is high and the industryputs huge claims on materials.

MULTIFILE

Developments to come to a circular construction economy; experiences in facilitating a local soil and sand depot
product

Extending grassland age for climate change mitigation and adaptation on clay soils

Permanent grassland soils can act as a sink for carbon and may therefore positively contribute to climate change mitigation and adaptation. We compared young (5–15 years since latest grassland renewal) with old (>20 years since latest grassland renewal) permanent grassland soils in terms of carbon stock, carbon sequestration, drought tolerance and flood resistance. The research was carried out on marine clay soil at 10 dairy farms with young and old permanent grassland. As hypothesized, the carbon stock was larger in old grassland (62 Mg C ha−1) topsoil (0–10 cm) than in young grassland topsoil (51 Mg C ha−1). The carbon sequestration rate was greater in young (on average 3.0 Mg C ha−1 year−1) compared with old grassland (1.6 Mg C ha−1 year−1) and determined by initial carbon stock. Regarding potential drought tolerance, we found larger soil moisture and soil organic matter (SOM) contents in old compared with young grassland topsoils. As hypothesized, the old grassland soils were more resistant to heavy rainfall as measured by water infiltration rate and macroporosity (at 20 cm depth) in comparison with the young grassland soils. In contrast to our hypothesis we did not find a difference in rooting between young and old permanent grassland, probably due to large variability in root biomass and root tip density. We conclude that old grasslands at dairy farms on clay soil can contribute more to the ecosystem services climate change mitigation and climate change adaptation than young grasslands. This study shows that under real farm conditions on a clay topsoil, carbon stock increases with grassland age and even after 30 years carbon saturation has not been reached. Further study is warranted to determine by how much extending grassland age can contribute to climate change mitigation and adaptation.

MULTIFILE

Extending grassland age for climate change mitigation and adaptation on clay soils

Projecten 1

project

Green Infrastructure in Urban Areas - innovative educational educational course

Climate change is increasing the challenges for water management worldwide. Extreme weather conditions, such as droughts and heavy rainfall, are increasingly limiting the availability of water, especially for agriculture. Nature-Based Solutions (NBS) offer potential solutions. They help to collect and infiltrate rainwater and thus play an important role in climate adaptation.Green infrastructure, such as rain gardens (sunken plant beds) and wadis (sunken grass fields for temporary storage of rainwater), help to restore the urban water balance. They reduce rainwater runoff, stabilize groundwater levels and solve problems with soil moisture and temperature. Despite these advantages, there is still much ignorance in practice about the possibilities of NBS. To remedy this, freely accessible knowledge modules are being developed that can help governments and future employees to better understand the application of these solutions. This research, called GINA (Green Infrastructure in Urban Areas), aims to create more sustainable and climate-resilient cities by developing and sharing knowledge about NBS, and supports local governments and students in effectively deploying these green infrastructures.

Lopend