The Netherlands is aiming for the roll-out of more solar PV. However like many densely populated countries, the country is running into issues of lack of space. Opportunities around infrastructural works like highways provide space without compromising the landscape. Examples of this double use are already developed and demonstrated, like for instance sound barriers and solar roads. New is the combination of solar PV with traffic barriers. This has a big potential since the Dutch main road network had 7.500 km of guiderail and the construction to put PV on is already there. In the MESH (Modular E cover for Solar Highways) project a consortium of knowledge institutes, a province and companies developed a prototype and tested it in a pilot. The consortium consists of TNO, Solliance (in which TNO is a partner, a high-end research institute for flexible thin film solar cells such as CIGS and Perovskite), Heijmans Infra (focusing mainly on the construction, improvement and maintenance of road infrastructure, including guiderails), DC Current (applying innovations with regard to power optimizers for the linear PV application), the Province of Noord-Holland (which acts as a leading customer) and the Amsterdam University of Applied Sciences (AUAS) as a knowledge institution that links education and research. In this project the theme Sustainable Energy Systems of AUAS is involved with both lecturers and student groups. In the project, Solliance investigated and developed the flexible thin film PV technology to be applied with a focus on shape and reliability. TNO and Heijmans developed a modular casing concept and a fastening system that allows quick installation on site. DC Current worked on the DC management with regard to voltage, electrical safety and minimizing failure in case of collision. At the end of the project, the partners in the consortium have validated knowledge about how to integrate PV into the guiderail and can start with the scaling up of the technology for commercial applications. In order to meet the various requirements for traffic safety on the one hand and generating electricity on the other hand, the Systems Engineering methodology was leading during the project. In the project we first built a small, but full scale prototype and invited safety experts to evaluate the design. With this feedback we made a redesign for the pilot. This pilot is placed on the highway as safety barrier and tested for a year. In a presentation at EU PVSEC18 [1] K.Sewalt reported on the design phase. This time we want to present the results of our test phase and give answers on our research questions.
This paper proposes a Hybrid Microgrid (HμG) model including distributed generation (DG) and a hydrogen-based storage system, controlled through a tailored control strategy. The HμG is composed of three DG units, two of them supplied by solar and wind sources, and the latter one based on the exploitation of theProton Exchange Membrane (PEM) technology. Furthermore, the system includes an alkaline electrolyser, which is used as a responsive load to balance the excess of Variable Renewable Energy Sources (VRES) production, and to produce the hydrogen that will be stored into the hydrogen tank and that will be used to supply the fuel cell in case of lack of generation. The main objectives of this work are to present a validated dynamic model for every component of the HμG and to provide a strategy to reduce as much as possible the power absorption from the grid by exploiting the VRES production. The alkaline electrolyser and PEM fuel cell models are validated through real measurements. The State of Charge (SoC) of the hydrogen tank is adjusted through an adaptive scheme. Furthermore, the designed supervisor power control allows reducing the power exchange and improving the system stability. Finally, a case, considering a summer load profile measured in an electrical substation of Politecnico di Torino, is presented. The results demonstrates the advantages of a hydrogen-based micro-grid, where the hydrogen is used as medium to store the energy produced by photovoltaic and wind systems, with the aim to improve the self-sufficiency of the system
MULTIFILE
The application of DC grids is gaining more attention in office applications. Especially since powering an office desk would not require a high power connection to the main AC grid but could be made sustainable using solar power and battery storage. This would result in fewer converters and further advanced grid utilization. In this paper, a sustainable desk power application is described that can be used for powering typical office appliances such as computers, lighting, and telephones. The desk will be powered by a solar panel and has a battery for energy storage. The applied DC grid includes droop control for power management and can either operate stand-alone or connected to other DC-desks to create a meshed-grid system. A dynamic DC nano-grid is made using multiple self-developed half-bridge circuit boards controlled by microcontrollers. This grid is monitored and controlled using a lightweight network protocol, allowing for online integration. Droop control is used to create dynamic power management, allowing automated control for power consumption and production. Digital control is used to regulate the power flow, and drive other applications, including batteries and solar panels. The practical demonstrative setup is a small-sized desktop with applications built into it, such as a lamp, wireless charging pad, and laptop charge point for devices up to 45W. User control is added in the form of an interactive remote wireless touch panel and power consumption is monitored and stored in the cloud. The paper includes a description of technical implementation as well as power consumption measurements.
Vanuit het bedrijfsleven is vraag naar het ontwikkelen van coatings met specifieke hoogwaardige eigenschappen. Een technisch haalbare en kosten efficiënte methode om dit te doen is door het inmengen van nanodeeltjes in coatings of in polymeren. Op dit moment is de beschikbaarheid (op grotere schaal) van hoogwaardige nanodeeltjes (grootte en deeltjesgrootte distributie) echter nog een knelpunt. Microreactortechnologie kan hiervoor een goede uitkomst bieden. In een microreactor kunnen reactiecondities zeer goed gecontroleerd worden en daardoor zal de reproduceerbaarheid goed zijn. Ook is het eenvoudig om een reactie in een microreactor op te schalen naar een groter volume. In het RAAK-MKB project Flow4Nano worden 2 sleutel technologieën van het lectoraat Material Sciences van Zuyd Hogeschool bij elkaar gebracht: nanotechnologie en microreactor technologie. In dit project zal de focus liggen op de toepassing van nanodeeltjes in optische coating voor zonnecellen en voor glastuinbouw. De toepassing in zonnecellen is een focus van het lectoraat Zonne Energie in de Gebouwde Omgeving van Zuyd. De toepassing in de glastuinbouw is een focus van de Hogeschool Arnhem Nijmegen in het lectoraat duurzame energie. De onderzoekvraag voor dit project is: “Can we produce nanoparticles with high specificity for use in advanced coatings and polymers with tailored functionalities for application in greenhouses and solar cells using (micro)flow?” De consortiumleden Zuyd Hogeschool / lectoraat material sciences (microreactor technologie / nanotechnologie), TNO/brightlands Material Centre (nanomaterialen voor energietoepassingen), Kriya Materials (producent nanodeeltjes) en Chemtrix (microflow apparatuur) zullen TiO2 en ZnO nanodeeltjes maken en karakteriseren. De consortiumpartners Zuyd / lectoraat Zonne-energie in de duurzaam gebouwde omgevingen HAN (lectoraat duurzame energie) zullen de geproduceerde nanodeeltjes testen in optisch actieve coatings voor toepassingen in zonne-energie en glastuinbouw respectievelijk. De consortiumpartner NanoHouse zal het stuk disseminatie op zich nemen.
Zuyd University and partners will develop novel coatings that contribute to a reduction in energy consumption of houses and buildings. The built environment currently consumes 46% of all energy, mainly for heating and cooling. A strong reduction is required as part of the transition towards sustainable energy. This is expressed by ambitious targets set by the Parkstad region, which has set itself the target to be energy neutral in 2040. For the Window of the Future Zuyd University (lectoraat Nanostructured Materials) and DWI (post-doc) aims to develop infrared regulating coatings that keep the heat inside in winter and outside in summer. These coatings are expected to strongly contribute to reduction of energy consumption. We will develop coating materials for application on glass windows, which are transparent for visible light to allow maximal daylight entering the building, and simultaneously regulate the transmission and reflection of IR heat. Kriya and Physee (SMEs) will advise Zuyd on technical and economic challenges related to the development of IR regulating glass windows. OMT Solutions (SME) and SGS Intron will advise on characterization and the performance validation. The need for such windows is confirmed by TNO/The Brightlands Materials Center as central challenge in their Optoelectronics program. They contribute largely to this project. Large demonstrator windows will be coated, and installed in test houses for real-life testing and quantification of the energy reduction. Zuyd (lectoraat Solar Energy in the Built Environment) will quantify the impact of smart IR regulating windows on the energy transition by comparing their impact to other available technologies, e.g. solar cells. In this quantification, Zuyd will focus on the Parkstad region. Together with Parkstad and Maastricht University (Ph.D. student), Zuyd will also quantify the socio-economic impact, and promote the societal acceptance of smart IR regulating windows.