Excess of renewable electricity from wind turbines or solar panels is used for electrolysis of water. To store this renewable energy as methane, the hydrogen is fed to an anaerobic digester to stimulate biological methanation by hydrogenotrophic methanogens. This workpackage focusses on the best ways for hydrogen delivery and the community changes in a biomethanation reactor as a result of hydrogen supply.
PV systems are used more and more. Not always is it possible to install them in the optimal direction for maximum energy output over the year. At the Johan Cruijff ArenA the PV panels are placed all around the roof in all possible directions. Panels oriented to the north will have a lower energy gain than those oriented to the south. The 42 panel groups are connected to 8 electricity meters. Of these 8 energy meters monthly kWh produced are available. The first assignment is to calculate the energy gains of the 42 panel groups, and connect these in the correct way with the 8 energy meter readings, so simulated data is in accordance with measured data.Of the year 2017 there are also main electricity meter readings available for every quarter of an hour. A problem with these readings is that only absolute values are given. When electricity is taken of the grid this is a positive reading, but when there is a surplus of solar energy and electricity is delivered to the grid, this is also a positive reading. To see the effect on the electricity demand of future energy measures, and to use the Seev4-City detailed CO2 savings calculation with the electricity mix of the grid, it is necessary to know the real electricity demand of the building.The second assignment is to use the calculations of the first assignment to separate the 15 minute electricity meter readings in that for real building demand and for PV production.This document first gives information for teachers (learning goals, possible activities, time needed, further reading), followed by the assignment for students.
Machine learning models have proven to be reliable methods in classification tasks. However, little research has been conducted on the classification of dwelling characteristics based on smart meter and weather data before. Gaining insights into dwelling characteristics, which comprise of the type of heating system used, the number of inhabitants, and the number of solar panels installed, can be helpful in creating or improving the policies to create new dwellings at nearly zero-energy standard. This paper compares different supervised machine learning algorithms, namely Logistic Regression, Support Vector Machine, K-Nearest Neighbor, and Long-short term memory, and methods used to correctly implement these algorithms. These methods include data pre-processing, model validation, and evaluation. Smart meter data, which was used to train several machine learning algorithms, was provided by Groene Mient. The models that were generated by the algorithms were compared on their performance. The results showed that the Long-short term memory performed the best with 96% accuracy. Cross Validation was used to validate the models, where 80% of the data was used for training purposes and 20% was used for testing purposes. Evaluation metrics were used to produce classification reports, which indicates that the Long-short term memory outperforms the compared models on the evaluation metrics for this specific problem.
As electric loads in residential areas increase as a result of developments in the areas of electric vehicles, heat pumps and solar panels, among others, it is becoming increasingly likely that problems will develop in the electricity distribution grid. This research will analyse different solutions to such problems to determine Using a model developed as part of this project, we will simulate various cases to determine under which circumstances load balancing at a community-level is more (cost) effective than alternative solutions (e.g. grid reinforcement and/or household batteries).
Wat is de mogelijke rol van lokale duurzame energiesystemen en –initiatieven in de overgang naar een duurzame samenleving? En hoe kunnen op lokale toepassing gerichte innovaties worden ontwikkeld en toegepast op een zodanige manier dat deze bij lokale systemen en initiatieven aansluiten?Deze vragen staan centraal in dit onderzoeksproject dat zich richt op innovaties die rekening houden met een grotere rol van burgers bij een duurzame energievoorziening. Het project behelst echter meer dan het verrichten van onderzoek. Het beoogt bouwstenen te leveren voor een duurzame samenleving waarin meer ruimte is voor lokale (burger)initiatieven. We stellen drie deelprojecten voor:1. een vergelijkende studie naar energiecoöperaties en vergelijkbare innovatieve initiatieven, binnen en buiten Nederland, in heden en verleden. Daarbij hopen we lering te kunnen trekken uit de succesvolle ervaringen in Denemarken en Oostenrijk en van innovaties door coöperatiesen collectieven in het verleden.2. een analyse van energie-innovaties die beogen aan te sluiten bij lokale energiesystemen. Concreet zal het onderzoek zich richten op speciale batterijen, ontwikkeld dor het bedrijf Dr.Ten, en een soort slimme grote zoneboiler, ontwikkeld door het gelijknamige bedrijf Ecovat.3. De ontwikkeling van drie scenario’s, gebaseerd op inzichten uit studies 1 en 2. De scenario’s zullen bijvoorbeeld inhoudelijk verschillen in de mate waarin deze geïntegreerd zijn in bestaande energiesystemen. Deze zullen worden ontwikkeld en besproken met relevante stakeholders.Het onderzoek moet leiden tot een nauwkeurig overzicht van de mate van interesse en betrokkenheid van stakeholders en van de beperkingen en mogelijkheden van lokale energiesystemen en daarbij betrokken technologie. Ook leidt het tot een routemap voor duurzame energiesystemen op lokaal niveau. Het project heeft een technisch aspect, onderzoek naar verfijning en ontwikkeling van de technologie en een sociaal en normatief aspect, studies naar aansluitingsmogelijkheden bij de wensen en mogelijkheden van burgers, instanties en bedrijven in Noord-Nederland. Bovenal is het integratief en ontwerpend van karakter.This research proposal will explore new socio- technical configurations of local community-based sustainable energy systems. Energy collectives successfully combine technological and societal innovations, developing new business and organization models. A better understanding of their dynamics and needs will contribute to their continued success and thereby contribute to fulfilling the Top Sector’s Agenda. This work will also enhance the knowledge position of the Netherlands on this topic. Currently, over 500 local energy collectives are active in The Netherlands, many of them aim to produce their own sustainable energy, with thousands more in Europe. These collectives search for a new more local-based ways of organizing a sustainable society, including more direct democratic decision-making and influence on local living environment. The development of the collectives is enabled by openings in policy but –evenly important - by innovations in local energy production technologies (solar panels, windmills, biogas installations). Their future role in the sustainable energy transition can be strengthened by careful aligning new organizational and technological innovations in local energy production, storage and smart micro-grids.
Designing with the Sun is a KIEM-GoCI explorative research project on the theme Energy Transition and Sustainability. The project is aimed at network and agenda building and design research that explores new (cultural) practices of renewable energy consumption, based on a shift from ‘energy blindness’ to ‘energy awareness’. Up until now the solar industry has been propelled forward by technical innovations, offering mostly pragmatic, economic benefits to consumers. Innovation in this field mostly concerns making solar panels more efficient and less costly. However, to succeed, the energy transition also needs new cultural practices. These practices should reflect the ways renewables are different from fossil fuels. For solar, this means using more direct solar energy, when the sun is there, and being able to adapt to periods of low energy. Currently, consumers are mostly ‘blind’ to the infrastructure behind fossil-based energy. However, for energy sources such as solar and wind ‘awareness’ of their availability becomes more important. What could such an awareness look or feel like? How can it be enacted? And how can a change in practice that is more attuned to availability be experienced positively? Solar companies see opportunities in using design to help build motivating practices and narratives within the solar field, enabling awareness through personal relationships between consumer and solar energy. However, the knowledge of how to get there is lacking. In a research-through-design trajectory, and together with partners from the Creative Industries, Designing with the Sun aims to explore new ways of relating citizens to solar energy. Ultimately, these insights should enable the newly emerging field of solar design to contribute to the emergence of more sustainable and rewarding energy awareness and practices.