Green Urban Solutions is de overkoepelende benaming voor innovatieve toepassingen van groen in stedelijk gebied, zoals bijvoorbeeld groene daken, groene gevels, indoor groen en specifiek ontworpen aanplant op pleinen en perken. Ondanks de vele waarden die Green Urban Solutions genereren en het brede scala aan stakeholders die hier belang bij hebben, ontbreekt het tot nog toe aan solide business modellen voor Green Urban Solutions waarin deze stakeholders gekoppeld worden aan de verschillende waarden die ze genereren. Het doel van dit onderzoek is om drie nieuwe business modellen te ontwikkelen en een advies te geven voor het betrekken van stakeholders om deze modellen te versterken en te verwezenlijken. Hiervoor is de volgende hoofdvraag opgesteld: ‘’Wat is het Nederlandse business model voor Green Urban Solutions dat de schakel vormt met de stakeholders waar ze waarde voor creëert?’’.
MULTIFILE
This study tackles the gate allocation problem (GAP) at the airport terminal, considering the current covid-19 pandemic restrictions. The GAP has been extensively studied by the research community in the last decades, as it represents a critical factor that determines an airport's capacity. Currently, the airport passenger terminal operations have been redesigned to be aligned and respect the covid-19 regulation worldwide. This provides operators with new challenges on how to handle the passengers inside the terminal. The purpose of this study is to come up with an efficient gate allocator that considers potential issues derived by the current pandemic, i.e., avoid overcrowded areas. A sim-opt approach has been developed where an evolutionary algorithm (EA) is used in combination with a dynamic passenger flow simulation model to find a feasible solution. The EA aims to find a (sub)optimal solution for the GAP, while the simulation model evaluates its efficiency and feasibility in a real-life scenario. To evaluate the potential of the Opt-Sim approach, it has been applied to a real airport case study.
Educational programs teaching entrepreneurial behaviour and knowledge are crucial to a vital and healthy economy. The concept of building a Communities of Practice (CoP) could be very promising. CoP’s are formed by people who engage in a process of collective learning in a shared domain of human endeavour (Wenger, McDermott and Snyder, 2002). They consist of a group of people who share a concern or a passion for something they do and learn how to do it better as they interact regularly. Normally CoP’s are rather homogeneous. Saxion institute Small Business & Retail Management (SB&RM) started a CoP with entrepreneurs September 2007. Typical in the this community, are the differences between the partners. The Community consists of students, entrepreneurs and members of an institution for higher education. They have different characteristics and they don’t share the same knowledge. Thus, building long-lasting relations can be complicated. Solid relations for longer periods are nevertheless inevitable in using CoP as a mean in an educational concept that takes approximately 4 years. After one year an evaluation took place on the main aspects of a lasting partnership. The central problem SB&RM in Deventer faces is to design the CoP in a way possible members will join and stay for a longer period and in a way it ensures entrepreneurial learning. This means important design characteristics have to be identified, and the CoP in Deventer has to be evaluated to assess whether it meets those design characteristics in an effective and efficient way. The main target of the evaluation is to determine which key factors are important to make sure continuity in partnership is assured and entrepreneurial learning is best supported. To solve the problem, an investigation on how a CoP works, what group dynamics take place, and how this can be measured has to be conducted. Furthermoreusing the CoP as a tool for entrepreneurship means key aspects of entrepreneurial learning have to be identified. After that the CoP in Deventer has to be examined on both aspects. According to literature CoP’s define themselves along three dimensions: domain (indicating what is it about), community (defining how it functions), and practice (indicating what capabilities it has produced) (Wenger, 1998). This leads to meaningful, shared and coordinated activities (Akkerman et al, 2007): Key aspects of a successful CoP lie in both hard and soft sides of creating a partnership. It means on one hand a CoP has to deal with defining their own overall vision, formulating long term goals and targets on the short term. They have to formulate how to achieve those targets and create meaningful activities (reification). On the other hand a CoP has to deal with relations, trust, norms and values (participation). Reification and participation as design characteristic can provide indicators on which the CoP in Deventer can be evaluated. A lasting partnership means joining the CoP and staying. Weick provides us with a suitable model that enables us to do research and evaluate whether the CoP in Deventer is successful or not, Weick’s model of means convergence. To effectively ensure entrepreneurial learning the process in the CoP has to provide or enable actionoriented forms through Project-based activity, accompanied by reflection, with high emotional exposure (or cognitive affection) preferably caused by discontinuities to be suitable as a tool in entrepreneurial learning. Furthermore it should be accompanied by the right preconditions to work effectively and efficiently. The evaluation of the present CoP in Deventer is done by interviewing all participants at the end of the first year of the partnership. In a structured interview, based on literature studies, all participants were separately questioned
MULTIFILE
Carboxylated cellulose is an important product on the market, and one of the most well-known examples is carboxymethylcellulose (CMC). However, CMC is prepared by modification of cellulose with the extremely hazardous compound monochloracetic acid. In this project, we want to make a carboxylated cellulose that is a functional equivalent for CMC using a greener process with renewable raw materials derived from levulinic acid. Processes to achieve cellulose with a low and a high carboxylation degree will be designed.
Due to societal developments, like the introduction of the ‘civil society’, policy stimulating longer living at home and the separation of housing and care, the housing situation of older citizens is a relevant and pressing issue for housing-, governance- and care organizations. The current situation of living with care already benefits from technological advancement. The wide application of technology especially in care homes brings the emergence of a new source of information that becomes invaluable in order to understand how the smart urban environment affects the health of older people. The goal of this proposal is to develop an approach for designing smart neighborhoods, in order to assist and engage older adults living there. This approach will be applied to a neighborhood in Aalst-Waalre which will be developed into a living lab. The research will involve: (1) Insight into social-spatial factors underlying a smart neighborhood; (2) Identifying governance and organizational context; (3) Identifying needs and preferences of the (future) inhabitant; (4) Matching needs & preferences to potential socio-techno-spatial solutions. A mixed methods approach fusing quantitative and qualitative methods towards understanding the impacts of smart environment will be investigated. After 12 months, employing several concepts of urban computing, such as pattern recognition and predictive modelling , using the focus groups from the different organizations as well as primary end-users, and exploring how physiological data can be embedded in data-driven strategies for the enhancement of active ageing in this neighborhood will result in design solutions and strategies for a more care-friendly neighborhood.
The pace of technology advancements continues to accelerate, and impacts the nature of systems solutions along with significant effects on involved stakeholders and society. Design and engineering practices with tools and perspectives, need therefore to evolve in accordance to the developments that complex, sociotechnical innovation challenges pose. There is a need for engineers and designers that can utilize fitting methods and tools to fulfill the role of a changemaker. Recognized successful practices include interdisciplinary methods that allow for effective and better contextualized participatory design approaches. However, preliminary research identified challenges in understanding what makes a specific method effective and successfully contextualized in practice, and what key competences are needed for involved designers and engineers to understand and adopt these interdisciplinary methods. In this proposal, case study research is proposed with practitioners to gain insight into what are the key enabling factors for effective interdisciplinary participatory design methods and tools in the specific context of sociotechnical innovation. The involved companies are operating at the intersection between design, technology and societal impact, employing experts who can be considered changemakers, since they are in the lead of creative processes that bring together diverse groups of stakeholders in the process of sociotechnical innovation. A methodology will be developed to capture best practices and understand what makes the deployed methods effective. This methodology and a set of design guidelines for effective interdisciplinary participatory design will be delivered. In turn this will serve as a starting point for a larger design science research project, in which an educational toolkit for effective participatory design for socio-technical innovation will be designed.