Purpose: To establish age-related, normal limits of monocular and binocular spatial vision under photopic and mesopic conditions. Methods: Photopic and mesopic visual acuity (VA) and contrast thresholds (CTs) were measured with both positive and negative contrast optotypes under binocular and monocular viewing conditions using the Acuity-Plus (AP) test. The experiments were carried out on participants (age range from 10 to 86 years), who met pre-established, normal sight criteria. Mean and ± 2.5σ limits were calculated within each 5-year subgroup. A biologically meaningful model was then fitted to predict mean values and upper and lower threshold limits for VA and CT as a function of age. The best-fit model parameters describe normal aging of spatial vision for each of the 16 experimental conditions investigated. Results: Out of the 382 participants recruited for this study, 285 participants passed the selection criteria for normal aging. Log transforms were applied to ensure approximate normal distributions. Outliers were also removed for each of the 16 stimulus conditions investigated based on the ±2.5σ limit criterion. VA, CTs and the overall variability were found to be age-invariant up to ~50 years in the photopic condition. A lower, age-invariant limit of ~30 years was more appropriate for the mesopic range with a gradual, but accelerating increase in both mean thresholds and intersubject variability above this age. Binocular thresholds were smaller and much less variable when compared to the thresholds measured in either eye. Results with negative contrast optotypes were significantly better than the corresponding results measured with positive contrast (p < 0.004). Conclusions: This project has established the expected age limits of spatial vision for monocular and binocular viewing under photopic and high mesopic lighting with both positive and negative contrast optotypes using a single test, which can be implemented either in the clinic or in an occupational setting.
DOCUMENT
The Maritime Spatial Planning (MSP) Challenge simulation platform helps planners and stakeholders understand and manage the complexity of MSP. In the interactive simulation, different data layers covering an entire sea region can be viewed to make an assessment of the current status. Users can create scenarios for future uses of the marine space over a period of several decades. Changes in energy infrastructure, shipping, and the marine environment are then simulated, and the effects are visualized using indicators and heat maps. The platform is built with advanced game technology and uses aspects of role-play to create interactive sessions; it can thus be referred to as serious gaming. To calculate and visualize the effects of planning decisions on the marine ecology, we integrated the Ecopath with Ecosim (EwE) food web modeling approach into the platform. We demonstrate how EwE was connected to MSP, considering the range of constraints imposed by running scientific software in interactive serious gaming sessions while still providing cascading ecological feedback in response to planning actions. We explored the connection by adapting two published ecological models for use in MSP sessions. We conclude with lessons learned and identify future developments of the simulation platform.
MULTIFILE
Office well-being aims to explore and support a healthy, balanced and active work style in office environments. Recent work on tangible user interfaces has started to explore the role of physical, tangible interfaces as active interventions to explore how to tackle problems such as inactive work and lifestyles, and increasingly sedentary behaviours. We identify a fragmented research landscape on tangible Office well-being interventions, missing the relationship between interventions, data, design strategies, and outcomes, and behaviour change techniques. Based on the analysis of 40 papers, we identify 7 classifications in tangible Office well-being interventions and analyse the intervention based on their role and foundation in behaviour change. Based on the analysis, we present design considerations for the development of future tangible Office well-being design interventions and present an overview of the current field and future research into tangible Office well-being interventions to design for a healthier and active office environment.
DOCUMENT
Many students persistently misinterpret histograms. This calls for closer inspection of students’ strategies when interpreting histograms and case-value plots (which look similar but are diferent). Using students’ gaze data, we ask: How and how well do upper secondary pre-university school students estimate and compare arithmetic means of histograms and case-value plots? We designed four item types: two requiring mean estimation and two requiring means comparison. Analysis of gaze data of 50 students (15–19 years old) solving these items was triangulated with data from cued recall. We found five strategies. Two hypothesized most common strategies for estimating means were confirmed: a strategy associated with horizontal gazes and a strategy associated with vertical gazes. A third, new, count-and-compute strategy was found. Two more strategies emerged for comparing means that take specific features of the distribution into account. In about half of the histogram tasks, students used correct strategies. Surprisingly, when comparing two case-value plots, some students used distribution features that are only relevant for histograms, such as symmetry. As several incorrect strategies related to how and where the data and the distribution of these data are depicted in histograms, future interventions should aim at supporting students in understanding these concepts in histograms. A methodological advantage of eye-tracking data collection is that it reveals more details about students’ problem-solving processes than thinking-aloud protocols. We speculate that spatial gaze data can be re-used to substantiate ideas about the sensorimotor origin of learning mathematics.
LINK
Interactive design is an emerging trend in dementia care environments. This article describes a research project aiming at the design and development of novel spatial objects with narrative attributes that incorporate embedded technology and textiles to support the wellbeing of people living with dementia. In collaboration with people with dementia, this interdisciplinary research project focuses on the question of how innovative spatial objects can be incorporated into dementia long-term care settings, transforming the space into a comforting and playful narrative environment that can enhance self-esteem while also facilitating communication between people living with dementia, family, and staff members. The research methodologies applied are qualitative, including Action Research. Participatory design methods with the experts by experience—the people with dementia—and health professionals have been used to inform the study. Early findings from this research are presented as design solutions comprising a series of spatial object prototypes with embedded technology and textiles. The prototypes were evaluated primarily by researchers, health professionals, academics, and design practitioners in terms of functionality, aesthetics, and their potential to stimulate engagement. The research is ongoing, and the aim is to evaluate the prototypes by using ethnographic and sensory ethnography methods and, consequently, further develop them through co-design workshops with people living with dementia.
MULTIFILE
Swales are widely used Sustainable Urban Drainage Systems (SuDS) that can reduce peak flow, collect and retain water and improve groundwater recharge. Most previous research has focused on the unsaturated infiltration rates of swales without considering the variation in infiltration rates under extreme climate events, such as multiple stormwater events after a long drought period. Therefore, fieldwork was carried out to collect hydraulic data of three swales under drought conditions followed by high precipitation. For this simulation, a new full-scale infiltration method was used to simulate five rainfall events filling up the total storage volume of the swales under drought conditions. The results were then compared to earlier research under regular circumstances. The results of this study show that three swales situated in the same street show a variation in initial infiltration capacity of 1.6 to 11.9 m/d and show higher infiltration rates under drought conditions. The saturated infiltration rate is up to a factor 4 lower than the initial unsaturated rate with a minimal rate of 0.5 m/d, close to the minimum required infiltration rate. Significant spatial and time variable infiltration rates are also found at similar research locations with multiple green infrastructures in close range. If the unsaturated infiltration capacity is used as the design input for computer models, the infiltration capacity may be significantly overestimated. The innovative method and the results of this study should help stormwater managers to test, model, plan and schedule maintenance requirements with more confidence, so that they will continue to perform satisfactorily over their intended design lifespan.
DOCUMENT
Abstract Background: COVID-19 was first identified in December 2019 in the city of Wuhan, China. The virus quickly spread and was declared a pandemic on March 11, 2020. After infection, symptoms such as fever, a (dry) cough, nasal congestion, and fatigue can develop. In some cases, the virus causes severe complications such as pneumonia and dyspnea and could result in death. The virus also spread rapidly in the Netherlands, a small and densely populated country with an aging population. Health care in the Netherlands is of a high standard, but there were nevertheless problems with hospital capacity, such as the number of available beds and staff. There were also regions and municipalities that were hit harder than others. In the Netherlands, there are important data sources available for daily COVID-19 numbers and information about municipalities. Objective: We aimed to predict the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants per municipality in the Netherlands, using a data set with the properties of 355 municipalities in the Netherlands and advanced modeling techniques. Methods: We collected relevant static data per municipality from data sources that were available in the Dutch public domain and merged these data with the dynamic daily number of infections from January 1, 2020, to May 9, 2021, resulting in a data set with 355 municipalities in the Netherlands and variables grouped into 20 topics. The modeling techniques random forest and multiple fractional polynomials were used to construct a prediction model for predicting the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants per municipality in the Netherlands. Results: The final prediction model had an R2 of 0.63. Important properties for predicting the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants in a municipality in the Netherlands were exposure to particulate matter with diameters <10 μm (PM10) in the air, the percentage of Labour party voters, and the number of children in a household. Conclusions: Data about municipality properties in relation to the cumulative number of confirmed infections in a municipality in the Netherlands can give insight into the most important properties of a municipality for predicting the cumulative number of confirmed COVID-19 infections per 10,000 inhabitants in a municipality. This insight can provide policy makers with tools to cope with COVID-19 and may also be of value in the event of a future pandemic, so that municipalities are better prepared.
LINK
This paper introduces a novel distributed algorithm designed to optimize the deployment of access points within Mobile Ad Hoc Networks (MANETs) for better service quality in infrastructure less environments. The algorithm operates based on local, independent execution by each network node, thus ensuring a high degree of scalability and adaptability to changing network conditions. The primary focus is to match the spatial distribution of access points with the distribution of client devices while maintaining strong connectivity to the network root. Using autonomous decision-making and choreographed path-planning, this algorithm bridges the gap between demand-responsive network service provision and the maintenance of crucial network connectivity links. The assessment of the performance of this approach is motivated by using numerical results generated by simulations.
DOCUMENT
Background: Development of more effective interventions for nonspecific chronic low back pain (LBP), requires a robust theoretical framework regarding mechanisms underlying the persistence of LBP. Altered movement patterns, possibly driven by pain-related cognitions, are assumed to drive pain persistence, but cogent evidence is missing. Aim: To assess variability and stability of lumbar movement patterns, during repetitive seated reaching, in people with and without LBP, and to investigate whether these movement characteristics are associated with painrelated cognitions. Methods: 60 participants were recruited, matched by age and sex (30 back-healthy and 30 with LBP). Mean age was 32.1 years (SD13.4). Mean Oswestry Disability Index-score in LBP-group was 15.7 (SD12.7). Pain-related cognitions were assessed by the ‘Pain Catastrophizing Scale’ (PCS), ‘Pain Anxiety Symptoms Scale’ (PASS) and the task-specific ‘Expected Back Strain’ scale(EBS). Participants performed a seated repetitive reaching movement (45 times), at self-selected speed. Lumbar movement patterns were assessed by an optical motion capture system recording positions of cluster markers, located on the spinous processes of S1 and T8. Movement patterns were characterized by the spatial variability (meanSD) of the lumbar Euler angles: flexion-extension, lateralbending, axial-rotation, temporal variability (CyclSD) and local dynamic stability (LDE). Differences in movement patterns, between people with and without LBP and with high and low levels of pain-related cognitions, were assessed with factorial MANOVA. Results: We found no main effect of LBP on variability and stability, but there was a significant interaction effect of group and EBS. In the LBP-group, participants with high levels of EBS, showed increased MeanSDlateral-bending (p = 0.004, η2 = 0.14), indicating a large effect. MeanSDaxial-rotation approached significance (p = 0.06). Significance: In people with LBP, spatial variability was predicted by the task-specific EBS, but not by the general measures of pain-related cognitions. These results suggest that a high level of EBS is a driver of increased spatial variability, in participants with LBP.
DOCUMENT