De Experience Tool: Mapping facts and practice to develop (spatial) experiences (Moes, Schrandt, Manuputty, Admiraal & van der Mark, 2019), is in eerste instantie ontwikkeld door docent-onderzoekers en een oud-student van het Amsterdam Fashion Institute (AMFI) om studenten beter onderbouwde afwegingen te laten maken over inrichting van bijvoorbeeld metrostations, winkels maar ook tentoonstellingen. De toolkit is dus niet ontwikkeld in het kader van Designing Experiencescapes of De Tentoonstellingsmaker van de 21ste Eeuw, maar deze onderzoeken hebben wel een belangrijke inhoudelijke basis gegeven voor de toolkit en zijn dus zeer relevant voor de (toekomstige) tentoonstellingsmaker. Het doel van deze tool is om spelers te inspireren bij en informeren over het creëren van belevingen in (hoofdzakelijk) fysieke ruimtes. De tool is voor iedereen die geïnteresseerd is in het creëren van belevingen en met name interessant voor studenten die een beleving willen neerzetten, in welke vorm dan ook en professionals uit de museale en de retailsector die invloed hebben op het inrichten van fysieke ruimtes.
MULTIFILE
The MSP Challenge uses game technology and role-play to support communication and learning for Marine/Maritime Spatial Planning. Since 2011, a role-playing game, a board game and a digital interactive simulation platform have been developed. The MSP Challenge editions have been used in workshops, conferences, education, as well as for real life stakeholder engagement. The authors give an overview of the development of the MSP Challenge and reflect on the value of the approach as an engaging and ‘fun’ tool for building mutual understanding and communicating MSP.
DOCUMENT
Purpose: To establish age-related, normal limits of monocular and binocular spatial vision under photopic and mesopic conditions. Methods: Photopic and mesopic visual acuity (VA) and contrast thresholds (CTs) were measured with both positive and negative contrast optotypes under binocular and monocular viewing conditions using the Acuity-Plus (AP) test. The experiments were carried out on participants (age range from 10 to 86 years), who met pre-established, normal sight criteria. Mean and ± 2.5σ limits were calculated within each 5-year subgroup. A biologically meaningful model was then fitted to predict mean values and upper and lower threshold limits for VA and CT as a function of age. The best-fit model parameters describe normal aging of spatial vision for each of the 16 experimental conditions investigated. Results: Out of the 382 participants recruited for this study, 285 participants passed the selection criteria for normal aging. Log transforms were applied to ensure approximate normal distributions. Outliers were also removed for each of the 16 stimulus conditions investigated based on the ±2.5σ limit criterion. VA, CTs and the overall variability were found to be age-invariant up to ~50 years in the photopic condition. A lower, age-invariant limit of ~30 years was more appropriate for the mesopic range with a gradual, but accelerating increase in both mean thresholds and intersubject variability above this age. Binocular thresholds were smaller and much less variable when compared to the thresholds measured in either eye. Results with negative contrast optotypes were significantly better than the corresponding results measured with positive contrast (p < 0.004). Conclusions: This project has established the expected age limits of spatial vision for monocular and binocular viewing under photopic and high mesopic lighting with both positive and negative contrast optotypes using a single test, which can be implemented either in the clinic or in an occupational setting.
DOCUMENT
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-8, 147-154, 2014www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-8/147/2014/doi:10.5194/isprsarchives-XL-8-147-2014Integrated flood disaster management and spatial information: Case studies ofNetherlands and IndiaS. Zlatanova1, T. Ghawana2, A. Kaur2, and J. M. M. Neuvel31Faculty of Architecture, Jullianalaan, TU Delft, 134, 2628BL Delft, the Netherlands2Centre for Disaster Management Studies, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi, P.O. Box-110078, India3Saxion University of Applied Sciences, Risk management, Handelskade 75, 7417 DH Deventer, the NetherlandsKeywords: Floods, Spatial Information Infrastructure, GIS, Risk Management, Emergency Management Abstract. Spatial Information is an integral part of flood management practices which include risk management &emergency response processes. Although risk & emergency management activities have their own characteristics, forexample, related to the time scales, time pressure, activities & actors involved, it is still possible to identify at least onecommon challenge that constrains the ability of risk & emergency management to plan for & manage emergencieseffectively and efficiently i.e. the need for better information. Considering this aspect, this paper explores flood managementin Netherlands& India with an emphasis on spatial information requirements of each system. The paper examines theactivities, actors & information needs related to flood management. Changing perspectives on flood management inNetherlands are studied where additional attention is being paid to the organization and preparation of flood emergencymanagement. Role of different key actors involved in risk management is explored. Indian Flood management guidelines, byNational Disaster Management Authority, are analyzed in context of their history, institutional framework, achievements andgaps. Flood Forecasting System of Central Water Commission of India is also analyzed in context of spatial dimensions.Further, information overlap between risk & emergency management from the perspectives of spatial planners & emergencyresponders and role of GIS based modelling / simulation is analyzed. Finally, the need for an integrated spatial informationstructure is explained & discussed in detail. This examination of flood management practices in the Netherlands and Indiawith an emphasis on the required spatial information in these practices has revealed an increased recognition of the stronginterdependence between risk management and emergency response processes. Consequently, the importance of anintegrated spatial information infrastructure that facilitates the process of both risk and emergency management isaddressed.Conference Paper (PDF, 1063 KB) Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-8, 147-154, 2014www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-8/147/2014/doi:10.5194/isprsarchives-XL-8-147-2014Integrated flood disaster management and spatial information: Case studies ofNetherlands and IndiaS. Zlatanova1, T. Ghawana2, A. Kaur2, and J. M. M. Neuvel31Faculty of Architecture, Jullianalaan, TU Delft, 134, 2628BL Delft, the Netherlands2Centre for Disaster Management Studies, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi, P.O. Box-110078, India3Saxion University of Applied Sciences, Risk management, Handelskade 75, 7417 DH Deventer, the NetherlandsKeywords: Floods, Spatial Information Infrastructure, GIS, Risk Management, Emergency ManagementAbstract. Spatial Information is an integral part of flood management practices which include risk management &emergency response processes. Although risk & emergency management activities have their own characteristics, forexample, related to the time scales, time pressure, activities & actors involved, it is still possible to identify at least onecommon&
MULTIFILE
Digitalization is gaining increasing attention in Higher Education (HE). The integrationof digital tools into instructional settings is particularly challenging, However, it offers manyopportunities to improve the learning process of students, especially in interdisciplinary teachingscenarios such as teaching sustainable usage of space and resources i.e. for the coastal zones and themarine areas. Worldwide, Marine Spatial Planning (MSP) and Integrated Coastal Zone Management(ICZM) are much needed approaches to manage and organize the increasing use of the sea andcoastal areas. Both are complex fields that are attracting more and more attention in interdisciplinaryHE. Correspondingly designed, the module ‘Planning and Management of Coastal Zones and SeaBasins’ at the University of Oldenburg, Germany, provides a case for integrating digital tools intoHE. In 2020, the digital serious game ‘MSP Challenge´ was used in an online learning format. Thisinteractive and collaborative tool supports informed decision making based on real and simulateddata, comparable to business (decision) processes based on environmental information systems(EIS). Therefore, the MSP Challenge game fosters not only the understanding of the complex topicbut additionally methodological skills which can be transferred to the usage EIS. While playing,students become able to (1) evaluate and simulate impacts of uses on coastal and marineenvironments, (2) describe the main interactions in ecosystems, (3) conceptualize information forsectoral or integrated MSP and (4) reflect on the role and use of data. In the presented case masterstudents studying “Water and Coastal Management” participated in the module. Moreover, thedigital serious game and the interdisciplinary topics of MSP and ICZM provides additionalopportunities to explore subtopics (e.g. IT-related) from other disciplinary perspectives.
LINK
Maritime Spatial Planning (MSP) is a politically guided and stakeholder-driven process involving a range of actors (i.e., planners, stakeholders, scientists, and citizens). Theories of boundary objects offer a lens to understand how actors, in the context of decision and policy-making in organizations, can coordinate without consensus. This seems particularly relevant when institutions and communities are relatively young, and the body of knowledge is fragmented and fluid, such as in the case of MSP. A key question is whether, and how boundary objects can be intentionally designed and used to facilitate social and policy learning in such communities. In this research, the focus is on the use of the MSP Challenge serious games as a boundary object to facilitate learning in ‘Communities of Practice’ (CoP) around MSP. Data were collected through questionnaires of 62 MSP Challenge workshops between 2016 and 2020 with more than 1100 participants. Additionally, 33 interviews with key stakeholders were conducted. The findings show that the MSP Challenge is widely used for various goals and in various settings and that they are interpreted differently by different users. The success of the MSP Challenge relies on the boundary space in which it is implemented, taking into account discrepancies in learning due to variations in the backgrounds and attitudes of the participants towards the object, the activity, and the setting in which it is deployed.
MULTIFILE
The Maritime Spatial Planning (MSP) Challenge simulation platform helps planners and stakeholders understand and manage the complexity of MSP. In the interactive simulation, different data layers covering an entire sea region can be viewed to make an assessment of the current status. Users can create scenarios for future uses of the marine space over a period of several decades. Changes in energy infrastructure, shipping, and the marine environment are then simulated, and the effects are visualized using indicators and heat maps. The platform is built with advanced game technology and uses aspects of role-play to create interactive sessions; it can thus be referred to as serious gaming. To calculate and visualize the effects of planning decisions on the marine ecology, we integrated the Ecopath with Ecosim (EwE) food web modeling approach into the platform. We demonstrate how EwE was connected to MSP, considering the range of constraints imposed by running scientific software in interactive serious gaming sessions while still providing cascading ecological feedback in response to planning actions. We explored the connection by adapting two published ecological models for use in MSP sessions. We conclude with lessons learned and identify future developments of the simulation platform.
MULTIFILE
This paper explores the impact of the physical and social dimensions of the work environment on satisfaction and perceived productivity of knowledge workers in Dutch universities of applied sciences. The approach took the form of a literature review, multiple case study of six research centres using interviews and logbook analysis, and web-based survey (N = 188). Optimally facilitating knowledge production requires both space for concentration (to support internalisation of knowledge) and space for interaction (to support externalisation of knowledge). None of the work environments involved in the study adequately supported all the phases of knowledge development adequately. Cellular offices with personal desks are preferred for solo work and, whereas new workplace designs with a focus on the office as a meeting place support interaction and collaboration. Spatial layout and interaction have a stronger impact than comfort and absence of distraction. The spatial layout should support both in-depth concentration and communication, fit the internalisation/externalisation ratio of activities, and accommodate the proximity essential for collaborative knowledge development. Being able to choose is the key to success. In terms of research limitations, knowledge workers’ productivity was measured by self-assessment, but only a limited number of diaries were collected. The lessons learned can be used as inputs to decision-making processes regarding the design, implementation and management of working environments in higher education settings. Few studies have been conducted concerning the spatial preferences and needs of knowledge workers in universities of applied sciences. The results show that the physical dimension (comfort and layout) is more important for collective productivity, whereas individual productivity is more strongly influenced by the social dimension (interaction and distraction).
MULTIFILE
This paper explores the impact of the physical and social dimensions of the work environment on satisfaction and perceived productivity of knowledge workers in Dutch universities of applied sciences. The approach took the form of a literature review, multiple case study of six research centres using interviews and logbook analysis, and web-based survey (N = 188). Optimally facilitating knowledge production requires both space for concentration (to support internalisation of knowledge) and space for interaction (to support externalisation of knowledge). None of the work environments involved in the study adequately supported all the phases of knowledge development adequately. Cellular offices with personal desks are preferred for solo work and, whereas new workplace designs with a focus on the office as a meeting place support interaction and collaboration. Spatial layout and interaction have a stronger impact than comfort and absence of distraction. The spatial layout should support both in-depth concentration and communication, fit the internalisation/externalization ratio of activities, and accommodate the proximity essential for collaborative knowledge development. Being able to choose is the key to success. In terms of research limitations, knowledge workers’ productivity was measured by self-assessment, but only a limited number of diaries were collected. The lessons learned can be used as inputs to decision-making processes regarding the design, implementation and management of workingenvironments in higher education settings. Few studies have been conducted concerning the spatial preferences and needs of knowledge workers in universities of applied sciences. The results show that the physical dimension (comfort and layout) is more important for collective productivity, whereas individual productivity is more strongly influenced by the social dimension (interaction and distraction).
MULTIFILE
Recent advancements in mobile sensing and wearable technologies create new opportunities to improve our understanding of how people experience their environment. This understanding can inform urban design decisions. Currently, an important urban design issue is the adaptation of infrastructure to increasing cycle and e-bike use. Using data collected from 12 cyclists on a cycle highway between two municipalities in The Netherlands, we coupled location and wearable emotion data at a high spatiotemporal resolution to model and examine relationships between cyclists' emotional arousal (operationalized as skin conductance responses) and visual stimuli from the environment (operationalized as extent of visible land cover type). We specifically took a within-participants multilevel modeling approach to determine relationships between different types of viewable land cover area and emotional arousal, while controlling for speed, direction, distance to roads, and directional change. Surprisingly, our model suggests ride segments with views of larger natural, recreational, agricultural, and forested areas were more emotionally arousing for participants. Conversely, segments with views of larger developed areas were less arousing. The presented methodological framework, spatial-emotional analyses, and findings from multilevel modeling provide new opportunities for spatial, data-driven approaches to portable sensing and urban planning research. Furthermore, our findings have implications for design of infrastructure to optimize cycling experiences.
MULTIFILE