Now, that the European cities are overcoming the recent economic challenges, they accelerate the development of major housingschemes to accommodate their growing urban population. Amsterdam for instance, sets out to construct 50,000 new homes by 2025. Parallel to this, the City Council presented a new regeneration and urban optimisationprogram in 2017, to reinforce existingneighbourhoods with relatively weak socio-economic status. If these housing policies are to maximise on opportunities, they need to anticipate the 2030 Agenda for Sustainable Development, the Paris Climate Agreement, and local socio-environmental challenges, into a single cohesive, sustainable solution. Currently, literature indicates that large scale spatial developments, have a tendency to move away from social and ecological ambitions during the course of the planning process. Moreover, ambitions tend to be short term “fixes” where they could be striving for long-term systemic solutions. What is needed, are practice proven comprehensive development strategies tosecure pathways for inclusive and integrated development. Those strategies are spatial and programmatic governance arrangements. Employing a comparative analysis method, we follow and compare the redevelopment of three deprived boroughs across Amsterdam. In collaboration with communities, we are able to construct a “Design Thinking” approach for urban spatial development, using different types of arrangements. This is in reflection and collaboration with the municipality of Amsterdam and a wide variety of skilled experts. The arrangements are tested in practice, following a plan-do-check-act cycle. The research project takes an in-depth look at the Amsterdam case and presents the first set of arrangements for planning more cohesive, urban spatial development and the preliminary strategies we see emerging.
DOCUMENT
This city profile provides a multi-dimensional overview on the most recent social, economic, political and spatial changes in the city of Amsterdam. We map the social-geography of the city, discussing recent housing and spatial development policies as well as city-regional political dynamics. Today, the city of Amsterdam is more diverse than ever, both ethnically and socially. The social geography of Amsterdam shows a growing core–periphery divide that underlines important economic and cultural asymmetries. The tradition of public subsidies and regulated housing currently allows for state-led gentrification within inner city neighborhoods. Public support for homeownership is changing the balance between social, middle and high-end housing segments. Changes in the tradition of large-scale interventions and strong public planning are likewise occurring. In times of austerity, current projects focus on small-scale and piecemeal interventions particularly oriented to stimulate entrepreneurialism in selected urban areas and often relate to creative economies and sustainable development. Finally, underlying these trends is a new political landscape composed of upcoming liberal and progressive parties, which together challenge the political equilibriums in the city region
DOCUMENT
This report is the second in a series of three reports named Value Added Planning, consisting of three unique, but interconnected tools, namely the Green Credit Tool, the Workbench Method and Value Added Planning, These tools have been developed and/or tested in the context of the European INTERREG programme: VALUE (INTERREG IVB North West Europe - Valuing Attractive Landscapes in the Urban Economy), in which the municipality of Amersfoort is involved. Aim of this programme is to understand how green space in urban centres can become more competitive with other urban functions. In this context, the municipality of Amersfoort has introduced the interactive method named Workbench Spatial Quality (Werkbank Ruimtelijke Kwaliteit in Dutch) in their spatial design in several areas in their municipality. The Workbench Spatial Quality (to be referred to as Workbench) has been applied on two cases in Amersfoort: Park Randenbroek and Vathorst NW. In this report the Workbench as applied in Amersfoort is evaluated. Research was done on the basis of literature research, case-material and interviews performed with several experts. Furthermore, research was done by students at the Wageningen University and Research Centre (WUR). Part of the evaluation in this report makes use of a quick scan of 19 Dutch cases. The question addressed in this report is: 1.How was the Workbench Spatial Quality applied in Amersfoort? 2.Can the Workbench contribute to sustainable spatial planning?
DOCUMENT
The implementation of marine spatial plans as required by the Directive on Maritime Spatial Planning (MSP) of the European Union (EU) poses novel demands for the development of decision support tools (DST). One fundamental aspect is the need for tools to guide decisions about the allocation of human activities at sea in ways that are ecosystem-based and lead to sustainable use of resources. The MSP Directive was the main driver behind the development of spatial and non-spatial DSTs for the analysis of marine and coastal areas across European seas. In this research we develop an analytical framework designed by DST software developers and managers for the analysis of six DSTs supporting MSP in the Baltic Sea, the North Sea, and the Mediterranean Sea. The framework compares the main conceptual, technical and practical aspects, by which these DSTs contribute to advancing the MSP knowledge base and identified future needs for the development of the tools. Results show that all of the studied DSTs include elements to support ecosystem-based management at different geographical scales (from national to macro-regional), relying on cumulative effects assessment and functionalities to facilitate communication at the science-policy interface. Based on our synthesis we propose a set of recommendations for knowledge exchange in relation to further DST developments, mechanisms for sharing experience among the user-developer community, and actions to increase the effectiveness of the DSTs in MSP processes.
LINK
The MSP Challenge uses game technology and role-play to support communication and learning for Marine/Maritime Spatial Planning. Since 2011, a role-playing game, a board game and a digital interactive simulation platform have been developed. The MSP Challenge editions have been used in workshops, conferences, education, as well as for real life stakeholder engagement. The authors give an overview of the development of the MSP Challenge and reflect on the value of the approach as an engaging and ‘fun’ tool for building mutual understanding and communicating MSP.
DOCUMENT
The design of a spatial distribution structure is of strategic importance for companies, to meet required customer service levels and to keep logistics costs as low as possible. Spatial distribution structure decisions concern distribution channel layout – i.e. the spatial layout of the transport and storage system – as well as distribution centre location(s). This paper examines the importance of seven main factors and 33 sub-factors that determine these decisions. The Best-Worst Method (BWM) was used to identify the factor weights, with pairwise comparison data being collected through a survey. The results indicate that the main factor is logistics costs. Logistics experts and decision makers respectively identify customer demand and service level as second most important factor. Important sub-factors are demand volatility, delivery time and perishability. This is the first study that quantifies the weights of the factors behind spatial distribution structure decisions. The factors and weights facilitate managerial decision-making with regard to spatial distribution structures for companies that ship a broad range of products with different characteristics. Public policy-makers can use the results to support the development of land use plans that provide facilities and services for a mix of industries.
DOCUMENT
The Maritime Spatial Planning (MSP) Challenge game: Short Sea Shipping (SSS) Edition is a table-top strategy board game, designed for policy-makers and stakeholders involved in MSP, short-sea shipping and the Blue Economy. It is a ‘serious game’, allowing the development of a better understanding of the issues involved in MSP through creative and imaginative role playing, taking into account the relevant professional and personal experience of the players. The authors present and discuss the use of the MSP Challenge board game to test how, and to what extent, the concept can help stakeholders understand Maritime Spatial Planning.
LINK
Comprehensive understanding of the merits of bottom-up urban development is lacking, thus hampering and complicating associated collaborative processes. Therefore, and given the assumed relevancies, we mapped the social, environmental and economic values generated by bottom-up developments in two Dutch urban areas, using theory-based evaluation principles. These evaluations raised insights into the values, beneficiaries and path dependencies between successive values, confirming the assumed effect of placemaking accelerating further spatial developments. It also revealed broader impacts of bottom-up endeavors, such as influences on local policies and innovations in urban development.
MULTIFILE
Presentation discussing how simulation/serious game research and development can change in the age of digital twin technologies.
DOCUMENT
Purpose: To establish age-related, normal limits of monocular and binocular spatial vision under photopic and mesopic conditions. Methods: Photopic and mesopic visual acuity (VA) and contrast thresholds (CTs) were measured with both positive and negative contrast optotypes under binocular and monocular viewing conditions using the Acuity-Plus (AP) test. The experiments were carried out on participants (age range from 10 to 86 years), who met pre-established, normal sight criteria. Mean and ± 2.5σ limits were calculated within each 5-year subgroup. A biologically meaningful model was then fitted to predict mean values and upper and lower threshold limits for VA and CT as a function of age. The best-fit model parameters describe normal aging of spatial vision for each of the 16 experimental conditions investigated. Results: Out of the 382 participants recruited for this study, 285 participants passed the selection criteria for normal aging. Log transforms were applied to ensure approximate normal distributions. Outliers were also removed for each of the 16 stimulus conditions investigated based on the ±2.5σ limit criterion. VA, CTs and the overall variability were found to be age-invariant up to ~50 years in the photopic condition. A lower, age-invariant limit of ~30 years was more appropriate for the mesopic range with a gradual, but accelerating increase in both mean thresholds and intersubject variability above this age. Binocular thresholds were smaller and much less variable when compared to the thresholds measured in either eye. Results with negative contrast optotypes were significantly better than the corresponding results measured with positive contrast (p < 0.004). Conclusions: This project has established the expected age limits of spatial vision for monocular and binocular viewing under photopic and high mesopic lighting with both positive and negative contrast optotypes using a single test, which can be implemented either in the clinic or in an occupational setting.
DOCUMENT