The Maritime Spatial Planning (MSP) Challenge simulation platform helps planners and stakeholders understand and manage the complexity of MSP. In the interactive simulation, different data layers covering an entire sea region can be viewed to make an assessment of the current status. Users can create scenarios for future uses of the marine space over a period of several decades. Changes in energy infrastructure, shipping, and the marine environment are then simulated, and the effects are visualized using indicators and heat maps. The platform is built with advanced game technology and uses aspects of role-play to create interactive sessions; it can thus be referred to as serious gaming. To calculate and visualize the effects of planning decisions on the marine ecology, we integrated the Ecopath with Ecosim (EwE) food web modeling approach into the platform. We demonstrate how EwE was connected to MSP, considering the range of constraints imposed by running scientific software in interactive serious gaming sessions while still providing cascading ecological feedback in response to planning actions. We explored the connection by adapting two published ecological models for use in MSP sessions. We conclude with lessons learned and identify future developments of the simulation platform.
MULTIFILE
The current multiple crisis require architects, designers, citymakers and stakeholders to re-think their approach to the city and territory, under the urge for a sustainable and inclusive future. While uncertainty and technocracy dominate, they also enable a open investigation and understanding of different future scenarios of spatial transformation. A revision of the term ‘adaptability’ promises to contribute to a new holistic approach.This paper presents the outputs of our current research project on adaptability at architectonic and urban level. It departs from the spatial disciplinary literature, and a large database of projects where this term plays a role implicitly or explicitly. We revisit theories and reposition them in the current unstable context. With this, we can enlarge the range of interactions and scales to approach simultaneously. Based on this, we propose new variables, and vocabularies in a framework for urban development beyond traditional confines.In fact, a new framework for the design of architectonic and urban space is articulated. It responds to different transformations of users’, usages’ and environmental conditions based on dimensions (scale, time, space), domains (social, economic, ecologic, climatic), adaptability ingredients (modularity, flexibility, interactivity, etc.), and resources (design by research, extreme scenario-thinking). We show them in action thought design projects conducted with students in the Netherlands and Belgium.We aim at generating holistic insights on the concept and methods of adaptability through some of the research and educational outcomes. Ultimately, we want to expand the mechanism of planning for an adaptive approach -from the building to the network, making lines of research, education and practice collide to address urgently needed changes.
MULTIFILE
Purpose: To establish age-related, normal limits of monocular and binocular spatial vision under photopic and mesopic conditions. Methods: Photopic and mesopic visual acuity (VA) and contrast thresholds (CTs) were measured with both positive and negative contrast optotypes under binocular and monocular viewing conditions using the Acuity-Plus (AP) test. The experiments were carried out on participants (age range from 10 to 86 years), who met pre-established, normal sight criteria. Mean and ± 2.5σ limits were calculated within each 5-year subgroup. A biologically meaningful model was then fitted to predict mean values and upper and lower threshold limits for VA and CT as a function of age. The best-fit model parameters describe normal aging of spatial vision for each of the 16 experimental conditions investigated. Results: Out of the 382 participants recruited for this study, 285 participants passed the selection criteria for normal aging. Log transforms were applied to ensure approximate normal distributions. Outliers were also removed for each of the 16 stimulus conditions investigated based on the ±2.5σ limit criterion. VA, CTs and the overall variability were found to be age-invariant up to ~50 years in the photopic condition. A lower, age-invariant limit of ~30 years was more appropriate for the mesopic range with a gradual, but accelerating increase in both mean thresholds and intersubject variability above this age. Binocular thresholds were smaller and much less variable when compared to the thresholds measured in either eye. Results with negative contrast optotypes were significantly better than the corresponding results measured with positive contrast (p < 0.004). Conclusions: This project has established the expected age limits of spatial vision for monocular and binocular viewing under photopic and high mesopic lighting with both positive and negative contrast optotypes using a single test, which can be implemented either in the clinic or in an occupational setting.
The key societal problem addressed by the EmPowerED consortium is the urgent need to accelerate and scale up the development of Positive Energy Districts (PEDs). Carbon neutral heating and cooling is a core element of the design of Positive Energy Districts (PEDS). However, many Dutch heat transition projects run behind schedule and are not compatible with this future vision of PEDs, making the heat transition a key factor in PED realization and upscaling. In this heat transition and the transition to PEDs, citizen engagement and support is a key societal factor and citizens need to be an integral part of the decision-making process on the realization of PEDs. Furthermore, technical, regulatory and financial uncertainties hamper the ability of decision makers to create PED system designs that have citizen support. Such system designs require a deep understanding of the relevant social, spatial, governance, legal, financial, and technical factors, and their interactions in PED system designs.
Management policy for protected species is currently often based on literature reviews and expert judgement, even though it requires tailor-made species knowledge on a local level. While wildlife management should preferably be evidence based, tailor-made field data is seldom used in current practices, because it is hardly available, difficult to collect and expensive. Recent development of digital technology is changing the field of wildlife management with “more, better, faster and cheaper” ways of data collection. Especially automated collection of field data with different types of sensors is promising, whereas miniaturization and low cost mass-production increase availability and use of these sensors. For collection of field data about predator-prey interactions, there is a need to develop wireless sensor networks that automatically identify different species in a community, while they record their spatially explicit data and their behaviour. Therefore, we will put together a consortium of partners that will develop a EU LIFE programme proposal, with the focus to develop a sensor network necessary to automatically monitor multiple species (i.e., species communities) for species conservation management. The consortium will consist of Van Hall Larenstein, Sovon Dutch Centre for Field Ornithology, the Dutch Mammal Society, Sensing Clues and DIKW intelligence. It will bring together a strong mix of expert knowledge on applied species conservation and wildlife management, ecological field research, wildlife intelligence, and handling and analysis of big data. This project matches the Top sector High-tech Systems & Materials, and revolves around 4 distinct phases: selection of potential consortium partners, exploration of the problem, working towards a common action perspective and writing a EU LIFE programme proposal. We will use knowledge co-creation techniques to explore the first three project phases.
Socio-economic pressures on coastal zones are on the rise worldwide, leaving increasingly less room for natural coastal change without affecting humans. The challenge is to find ways for social and natural systems to co-exist, co-develop and create synergies. The recent implementation of multi-functional, nature-based solutions (NBS) on the sandy Dutch coast seem to offer great potential in that respect. Surprisingly, the studies evaluating these innovative solutions paid little attention to how the social and natural systems interact in the NBS-modified coastal landscapes and if these interactions strengthen or weaken the primary functions of the NBS. It is not clear whether the objectives to improve coastal resilience and spatial quality will be met throughout the lifetime of the intervention. In the proposed project we will investigate the socio-bio-physical dynamics of anthropogenic sandy shores applying a Living Lab approach, documenting and analyzing interactions between evolving anthropogenic shores (Sand Motor and Hondsbossche Duinen, Fig.1) and people that use and manage these NBS-modified landscapes. Socio-bio-physical interactions will be investigated at various scales, and consequences for the long-term functionality of the NBS will be assessed, by coupling an agent-based social model and a cellular automata landscape model. By studying the behavior of the coupled system we aim to identify limits to, and optima in, multi-functionality of the NBS design, and will study how various stakeholders can influence the development of the NBS in desired directions with respect to primary NBS functions, including social and ecological goals. Together with consortium partners from public and private sectors we will co-create guidelines for management and maintenance of multifunctional NBS and design procedures and visualization tools for intervention design.