In de ontwerpstudio Spatial Narratives verkennen ruimtelijk ontwerpers en game-ontwikkelaars aan HKU de werking van het immersieve virtuele model in ruimtelijk ontwerp. Dit virtuele model is een performatieve ruimte in de manier waarop het door de bezoeker-ontwerper kan worden ingenomen en van binnenuit geactiveerd, maar het is ook performatief in de manier waarop de simulatie van ruimte tot stand komt. Wat kan dit model doen in de praktijk van ruimtelijk ontwerp?
There is a lot of attention for the reduction of city logistics' emissions. But also if city logistics' vehicles are zero emission, the vehicles remain present in urban areas. Zero emission vehicles also occupy valuable urban space during unloading on the road and on sidewalks. Despite the spatial impact of city logistics, it is rarely considered in spatial planning. Based on four case studies, we explore possibilities to actively integrate city logistics in spatial planning policies and practices in order to reduce nuisance, but also to enhance efficiency of deliveries. In the end, spatial planning determines the physical urban conditions in which city logistics operations are taking place for many years. From the results we distil a research agenda to bridge the gap between city logistics as a traffic issue and its integration in spatial planning policies.
LINK
Purpose: To establish age-related, normal limits of monocular and binocular spatial vision under photopic and mesopic conditions. Methods: Photopic and mesopic visual acuity (VA) and contrast thresholds (CTs) were measured with both positive and negative contrast optotypes under binocular and monocular viewing conditions using the Acuity-Plus (AP) test. The experiments were carried out on participants (age range from 10 to 86 years), who met pre-established, normal sight criteria. Mean and ± 2.5σ limits were calculated within each 5-year subgroup. A biologically meaningful model was then fitted to predict mean values and upper and lower threshold limits for VA and CT as a function of age. The best-fit model parameters describe normal aging of spatial vision for each of the 16 experimental conditions investigated. Results: Out of the 382 participants recruited for this study, 285 participants passed the selection criteria for normal aging. Log transforms were applied to ensure approximate normal distributions. Outliers were also removed for each of the 16 stimulus conditions investigated based on the ±2.5σ limit criterion. VA, CTs and the overall variability were found to be age-invariant up to ~50 years in the photopic condition. A lower, age-invariant limit of ~30 years was more appropriate for the mesopic range with a gradual, but accelerating increase in both mean thresholds and intersubject variability above this age. Binocular thresholds were smaller and much less variable when compared to the thresholds measured in either eye. Results with negative contrast optotypes were significantly better than the corresponding results measured with positive contrast (p < 0.004). Conclusions: This project has established the expected age limits of spatial vision for monocular and binocular viewing under photopic and high mesopic lighting with both positive and negative contrast optotypes using a single test, which can be implemented either in the clinic or in an occupational setting.
Due to societal developments, like the introduction of the ‘civil society’, policy stimulating longer living at home and the separation of housing and care, the housing situation of older citizens is a relevant and pressing issue for housing-, governance- and care organizations. The current situation of living with care already benefits from technological advancement. The wide application of technology especially in care homes brings the emergence of a new source of information that becomes invaluable in order to understand how the smart urban environment affects the health of older people. The goal of this proposal is to develop an approach for designing smart neighborhoods, in order to assist and engage older adults living there. This approach will be applied to a neighborhood in Aalst-Waalre which will be developed into a living lab. The research will involve: (1) Insight into social-spatial factors underlying a smart neighborhood; (2) Identifying governance and organizational context; (3) Identifying needs and preferences of the (future) inhabitant; (4) Matching needs & preferences to potential socio-techno-spatial solutions. A mixed methods approach fusing quantitative and qualitative methods towards understanding the impacts of smart environment will be investigated. After 12 months, employing several concepts of urban computing, such as pattern recognition and predictive modelling , using the focus groups from the different organizations as well as primary end-users, and exploring how physiological data can be embedded in data-driven strategies for the enhancement of active ageing in this neighborhood will result in design solutions and strategies for a more care-friendly neighborhood.
The population in rural areas in the northern provinces are aging in a much higher pace than in other parts of the Netherlands. Many young and higher educated citizens move out of these provinces. Quality of life in rural villages decreases likewise and the inhabitants that stay behind are more vulnerable, with lower income and educational levels. Recent decentralization policies put a larger burden on local constituencies to guarantee the quality of the living environment but a lot of them lack sufficient knowledge and capacity to tackle this complex issue.The initiators of this application have joined their knowledge and experience to put together a consortium with the aim to support these smaller constituencies in rural areas in the three northern provinces with a new and innovative methodology: the GO! approach. This approach was developed in the neigborhoods of Utrecht municipality and will be used for the first time in rural communities with a comparable size .This approach consists of the following steps:• First to identify possibilities to create a healthier living environment by analyzing available data on pollution, spatial layout and social cohesion.• To discuss the result of this analysis with local citizens and other local stakeholders in order to link the data with local experiences• To prioritize into major themes as a result of the combination of all this available information.• To link these major themes to combinations effective measures available from RIVM and international databases.• To present these combinations to the local government, their citizens and other local stakeholders in order to let them choose for an effective approach and inplemant it together in order to create a local healthier living environment.The GO! approach will provide local citizens and professionals with the necessary tools and knowledge to work jointly and effectively to realize a healthier living environment. The project partners that jointly started the consortium will put in effort during this first year to build and formalize the consortium and to make arrangements with several constituencies in the three northers provinces to formulate their own specific knowledge agenda as a basis for concrete project proposals in the second stage to be implemented with the support of the formalized consortium.
The reclaiming of street spaces for pedestrians during the COVID-19 pandemic, such as on Witte de Withstraat in Rotterdam, appears to have multiple benefits: It allows people to escape the potentially infected indoor air, limits accessibility for cars and reduces emissions. Before ordering their coffee or food, people may want to check one of the many wind and weather apps, such as windy.com: These apps display the air quality at any given time, including, for example, the amount of nitrogen dioxide (NO2), a gas responsible for an increasing number of health issues, particularly respiratory and cardiovascular diseases. Ships and heavy industry in the nearby Port of Rotterdam, Europe’s largest seaport, exacerbate air pollution in the region. Not surprisingly, in 2020 Rotterdam was ranked as one of the unhealthiest cities in the Netherlands, according to research on the health of cities conducted by Arcadis. Reducing air pollution is a key target for the Port Authority and the City of Rotterdam. Missing, however, is widespread awareness among citizens about how air pollution links to socio-spatial development, and thus to the future of the port city cluster of Rotterdam. To encourage awareness and counter the problem of "out of sight - out of mind," filmmaker Entrop&DeZwartFIlms together with ONSTV/NostalgieNet, and Rotterdam Veldakademie, are collaborating with historians of the built environment and computer science and public health from TU Delft and Erasmus University working on a spatial data platform to visualize air pollution dynamics and socio-economic datasets in the Rotterdam region. Following discussion of findings with key stakeholders, we will make a pilot TV-documentary. The documentary, discussed first with Rotterdam citizens, will set the stage for more documentaries on European and international cities, focusing on the health effects—positive and negative—of living and working near ports in the past, present, and future.