Background: The diagnosis of sarcopenia is essential for early treatment of sarcopenia in older adults, for which assessment of appendicular lean mass (ALM) is needed. Multi-frequency bio-electrical impedance analysis (MF-BIA) may be a valid assessment tool to assess ALM in older adults, but the evidences are limited. Therefore, we validated the BIA to diagnose low ALM in older adults.Methods: ALM was assessed by a standing-posture 8 electrode MF-BIA (Tanita MC-780) in 202 community-dwelling older adults (age ≥ 55 years), and compared with dual-energy X-ray absorptiometry (DXA) (Hologic Inc., Marlborough, MA, United States; DXA). The validity for assessing the absolute values of ALM was evaluated by: (1) bias (mean difference), (2) percentage of accurate predictions (within 5% of DXA values), (3) the mean absolute error (MAE), and (4) limits of agreement (Bland-Altman analysis). The lowest quintile of ALM by DXA was used as proxy for low ALM (< 22.8 kg for men, < 16.1 kg for women). Sensitivity and specificity of diagnosing low ALM by BIA were assessed.Results: The mean age of the subjects was 72.1 ± 6.4 years, with a BMI of 25.4 ± 3.6 kg/m2, and 71% were women. BIA slightly underestimated ALM compared to DXA with a mean bias of -0.6 ± 1.2 kg. The percentage of accurate predictions was 54% with a MAE of 1.1 kg, and limits of agreement were -3.0 to + 1.8 kg. The sensitivity for ALM was 80%, indicating that 80% of subjects who were diagnosed as low ALM according to DXA were also diagnosed low ALM by BIA. The specificity was 90%, indicating that 90% of subjects who were diagnosed as normal ALM by DXA were also diagnosed as normal ALM by the BIA.Conclusion: This comparison showed a poor validity of MF-BIA to assess the absolute values of ALM, but a reasonable sensitivity and specificity to recognize the community-dwelling older adults with the lowest muscle mass.
This study evaluates the concurrent validity of five malnutrition screening tools to identify older hospitalized patients against the Global Leadership Initiative on Malnutrition (GLIM) diagnostic criteria as limited evidence is available. The screening tools Short Nutritional Assessment Questionnaire (SNAQ), Malnutrition Universal Screening Tool (MUST), Malnutrition Screening Tool (MST), Mini Nutritional Assessment—Short Form (MNA-SF), and the Patient-Generated Subjective Global Assessment—Short Form (PG-SGA-SF) with cut-offs for both malnutrition (conservative) and moderate malnutrition or risk of malnutrition (liberal) were used. The concurrent validity was determined by the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and the level of agreement by Cohen’s kappa. In total, 356 patients were included in the analyses (median age 70 y (IQR 63–77); 54% male). The prevalence of malnutrition according to the GLIM criteria without prior screening was 42%. The conservative cut-offs showed a low-to-moderate sensitivity (32–68%) and moderate-to-high specificity (61–98%). The PPV and NPV ranged from 59 to 94% and 67–86%, respectively. The Cohen’s kappa showed poor agreement (k = 0.21–0.59). The liberal cut-offs displayed a moderate-to-high sensitivity (66–89%) and a low-to-high specificity (46–95%). The agreement was fair to good (k = 0.33–0.75). The currently used screening tools vary in their capacity to identify hospitalized older patients with malnutrition. The screening process in the GLIM framework requires further consideration.
AIM: To systematically review the available literature on the diagnostic accuracy of questionnaires and measurement instruments for headaches associated with musculoskeletal symptoms.DESIGN: Articles were eligible for inclusion when the diagnostic accuracy (sensitivity/specificity) was established for measurement instruments for headaches associated with musculoskeletal symptoms in an adult population. The databases searched were PubMed (1966-2018), Cochrane (1898-2018) and Cinahl (1988-2018). Methodological quality was assessed with the Quality Assessment of Diagnostic Accuracy Studies tool (QUADAS-2) and COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist for criterion validity. When possible, a meta-analysis was performed. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) recommendations were applied to establish the level of evidence per measurement instrument.RESULTS: From 3450 articles identified, 31 articles were included in this review. Eleven measurement instruments for migraine were identified, of which the ID-Migraine is recommended with a moderate level of evidence and a pooled sensitivity of 0.87 (95% CI: 0.85-0.89) and specificity of 0.75 (95% CI: 0.72-0.78). Six measurement instruments examined both migraine and tension-type headache and only the Headache Screening Questionnaire - Dutch version has a moderate level of evidence with a sensitivity of 0.69 (95% CI 0.55-0.80) and specificity of 0.90 (95% CI 0.77-0.96) for migraine, and a sensitivity of 0.36 (95% CI 0.21-0.54) and specificity of 0.86 (95% CI 0.74-0.92) for tension-type headache. For cervicogenic headache, only the cervical flexion rotation test was identified and had a very low level of evidence with a pooled sensitivity of 0.83 (95% CI 0.72-0.94) and specificity of 0.82 (95% CI 0.73-0.91).DISCUSSION: The current review is the first to establish an overview of the diagnostic accuracy of measurement instruments for headaches associated with musculoskeletal factors. However, as most measurement instruments were validated in one study, pooling was not always possible. Risk of bias was a serious problem for most studies, decreasing the level of evidence. More research is needed to enhance the level of evidence for existing measurement instruments for multiple headaches.
Vanuit het bedrijfsleven is vraag naar het ontwikkelen van coatings met specifieke hoogwaardige eigenschappen. Een technisch haalbare en kosten efficiënte methode om dit te doen is door het inmengen van nanodeeltjes in coatings of in polymeren. Op dit moment is de beschikbaarheid (op grotere schaal) van hoogwaardige nanodeeltjes (grootte en deeltjesgrootte distributie) echter nog een knelpunt. Microreactortechnologie kan hiervoor een goede uitkomst bieden. In een microreactor kunnen reactiecondities zeer goed gecontroleerd worden en daardoor zal de reproduceerbaarheid goed zijn. Ook is het eenvoudig om een reactie in een microreactor op te schalen naar een groter volume. In het RAAK-MKB project Flow4Nano worden 2 sleutel technologieën van het lectoraat Material Sciences van Zuyd Hogeschool bij elkaar gebracht: nanotechnologie en microreactor technologie. In dit project zal de focus liggen op de toepassing van nanodeeltjes in optische coating voor zonnecellen en voor glastuinbouw. De toepassing in zonnecellen is een focus van het lectoraat Zonne Energie in de Gebouwde Omgeving van Zuyd. De toepassing in de glastuinbouw is een focus van de Hogeschool Arnhem Nijmegen in het lectoraat duurzame energie. De onderzoekvraag voor dit project is: “Can we produce nanoparticles with high specificity for use in advanced coatings and polymers with tailored functionalities for application in greenhouses and solar cells using (micro)flow?” De consortiumleden Zuyd Hogeschool / lectoraat material sciences (microreactor technologie / nanotechnologie), TNO/brightlands Material Centre (nanomaterialen voor energietoepassingen), Kriya Materials (producent nanodeeltjes) en Chemtrix (microflow apparatuur) zullen TiO2 en ZnO nanodeeltjes maken en karakteriseren. De consortiumpartners Zuyd / lectoraat Zonne-energie in de duurzaam gebouwde omgevingen HAN (lectoraat duurzame energie) zullen de geproduceerde nanodeeltjes testen in optisch actieve coatings voor toepassingen in zonne-energie en glastuinbouw respectievelijk. De consortiumpartner NanoHouse zal het stuk disseminatie op zich nemen.
Fluorescence microscopy is an indispensable technique to resolve structure and specificity in many scientific areas such as diagnostics, health care, materials- and life sciences. With the development of multi-functional instruments now costing hundreds of thousands of Euros, the availability and access to high-tech instrumentation is increasingly limited to larger imaging facilities. Here, we will develop a cost-effective alternative by combining a commercially available solution for high-resolution confocal imaging (the RCM from confocal.nl) with an open-hardware microscopy framework, the miCube, developed in the Laboratory of Biophysics of Wageningen University & Research. In addition, by implementing a recent invention of the applicant for the spectral separation of different emitters, we will improve the multiplexing capabilities of fluorescence microscopy in general and the RCM in particular. Together, our new platform will help to translate expertise and know-how created in an academic environment into a commercially sustainable future supporting the Dutch technology landscape.
Wildlife crime is an important driver of biodiversity loss and disrupts the social and economic activities of local communities. During the last decade, poaching of charismatic megafauna, such as elephant and rhino, has increased strongly, driving these species to the brink of extinction. Early detection of poachers will strengthen the necessary law enforcement of park rangers in their battle against poaching. Internationally, innovative, high tech solutions are sought after to prevent poaching, such as wireless sensor networks where animals function as sensors. Movement of individuals of widely abundant, non-threatened wildlife species, for example, can be remotely monitored ‘real time’ using GPS-sensors. Deviations in movement of these species can be used to indicate the presence of poachers and prevent poaching. However, the discriminative power of the present movement sensor networks is limited. Recent advancements in biosensors led to the development of instruments that can remotely measure animal behaviour and physiology. These biosensors contribute to the sensitivity and specificity of such early warning system. Moreover, miniaturization and low cost production of sensors have increased the possibilities to measure multiple animals in a herd at the same time. Incorporating data about within-herd spatial position, group size and group composition will improve the successful detection of poachers. Our objective is to develop a wireless network of multiple sensors for sensing alarm responses of ungulate herds to prevent poaching of rhinos and elephants.