Valongevallen zijn de meest voorkomende oorzaak van letsel door een ongeval bij ouderen. Omdat veel ouderen alleen wonen is het van belang dat de val tijdig wordt opgemerkt met een alarmsysteem. Er zijn veel systemen op de markt waarbij de gebruiker een alarmknop op een polsband of hanger moet indrukken. Uit onderzoek blijkt dat ouderen het alarmsysteem vaak niet gebruiken omdat de hanger niet meegedragen wordt of omdat de werking van het systeem niet duidelijk is. Een ‘ambient’ systeem heeft daarom de voorkeur. In het lectoraat Digital Life van de Hogeschool van Amsterdam bestuderen we ambient sensoren (schakelaars, stroommeters, drukmatten, bewegingsmelders etc.) en imaging sensors (camera’s, range camera’s, stereocamera’s) om activiteiten van mensen te meten. In onze presentatie beschrijven we het gebruik van ‘slimme’ camera’s voor valdetectie en laten enkele resultaten zien. Ook beschrijven we ons ‘ValLab’, waar onderzoekers en studenten HBO en WO data kunnen opnemen in realistische omgevingen.
ObjectiveThe Plants for Joints (PFJ) intervention significantly improved pain, stiffness, and physical function, and metabolic outcomes, in people with metabolic syndrome-associated osteoarthritis (MSOA). This secondary analysis investigated its effects on body composition.MethodIn the randomized PFJ study, people with MSOA followed a 16-week intervention based on a whole-food plant-based diet, physical activity, and stress management, or usual care. For this secondary analysis, fat mass, muscle mass, and bone mineral density were measured using dual-energy X-ray absorptiometry (DEXA) for all participants. Additionally, in a subgroup (n = 32), hepatocellular lipid (HCL) content and composition of visceral adipose tissue (VAT) were measured using magnetic resonance spectroscopy (MRS). An intention-to-treat analysis with a linear-mixed model adjusted for baseline values was used to analyse between-group differences.ResultsOf 66 people randomized, 64 (97%) completed the study. The PFJ group experienced significant weight loss (−5.2 kg; 95% CI –6.9, −3.6) compared to controls, primarily from fat mass reduction (−3.9 kg; 95% CI –5.3 to −2.5). No significant differences were found in lean mass, muscle strength, or bone mineral density between groups. In the subgroup who underwent MRI scans, the PFJ group had a greater reduction in HCL (−6.5%; 95% CI –9.9, 3.0) compared to controls, with no observed differences in VAT composition.ConclusionThe PFJ multidisciplinary intervention positively impacted clinical and metabolic outcomes, and appears to significantly reduce body fat, including liver fat, while preserving muscle mass and strength.
Traces of condom lubricants in fingerprints can be valuable information in cases of sexual assault. Ideally, not only confirmation of the presence of the condom but also determination of the type of condom brand used can be retrieved. Previous studies have shown to be able to retrieve information about the condom brand and type from fingerprints containing lubricants using various analytical techniques. However, in practice fingerprints often appear latent and need to be detected first, which is often achieved by cyanoacrylate fuming. In this study, we developed a desorption electrospray ionization mass spectrometry (DESI-MS) method which, combined with principal component analysis and linear discriminant analysis (PCA-LDA), allows for high accuracy classification of condom brands and types from fingerprints containing condom lubricant traces. The developed method is compatible with cyanoacrylate (CA) fuming. We collected and analyzed a representative dataset for the Netherlands comprising 32 different condoms. Distinctive lubricant components such as polyethylene glycol (PEG), polydimethylsiloxane (PDMS), octoxynol-9 and nonoxynol-9 were readily detected using the DESI-MS method. Based on the analysis of lubricant spots, a 99.0% classification accuracy was achieved. When analyzing lubricant containing fingerprints, an overall accuracy of 90.9% was obtained. Full chemical images could be generated from fingerprints, showing the distribution of lubricant components such as PEG and PDMS throughout the fingerprint, while still allowing for classification. The developed method shows potential for the development of DESI-MS based analyses of CA treated exogenous compounds from fingerprints for use in forensic science.
De glastuinbouw in Nederland is wereldwijd toonaangevend en loopt voorop in automatisering en data-gedreven bedrijfsvoering. Voor de data-gedreven teelt wordt, naast het monitoren van de kas-parameters ook het monitoren van gewasparameters steeds meer gevraagd. De sector is daarbij vooral geïnteresseerd in niet-destructieve, contactloze en persoonsonafhankelijk monitoring van gewassen. Optische sensortechnologie, zoals spectrale afbeeldingstechnologie, kan veel waardevolle informatie opleveren over de staat van een gewas of vrucht, bijvoorbeeld over het suikergehalte, maar ook de aanwezigheid van plantziektes of insecten. Echter is dit vaak een te kostbare oplossing voor zowel de technologiebedrijven die oplossingen leveren als voor de telers zelf. In dit project onderzoeken wij de mogelijkheid om spectrale beeldvorming tegen lagere kosten te realiseren. Het beoogde resultaat is een prototype van een instrument dat tegen lage kosten met spectrale beeldvorming een of meerdere gewaseigenschappen kan kwantificeren. Realisatie van dit prototype heeft een sterke Fotonica-component (expertise Haagse Hogeschool) maakt gebruik van Machine Learning (expertise perClass) en is bedoeld voor toepassing op scout robots in de glastuinbouw (expertise Mythronics). Een betaalbare oplossing betekent in potentie voor de teler een betere controle over kwaliteit van het gewas en automatisering voor detectie van ziekte-uitbraken. Bij een succesvol prototype kan deze innovatie leiden tot betere voedselkwaliteit en minder verspilling in de glastuinbouw.
Fluorescence microscopy is an indispensable technique to resolve structure and specificity in many scientific areas such as diagnostics, health care, materials- and life sciences. With the development of multi-functional instruments now costing hundreds of thousands of Euros, the availability and access to high-tech instrumentation is increasingly limited to larger imaging facilities. Here, we will develop a cost-effective alternative by combining a commercially available solution for high-resolution confocal imaging (the RCM from confocal.nl) with an open-hardware microscopy framework, the miCube, developed in the Laboratory of Biophysics of Wageningen University & Research. In addition, by implementing a recent invention of the applicant for the spectral separation of different emitters, we will improve the multiplexing capabilities of fluorescence microscopy in general and the RCM in particular. Together, our new platform will help to translate expertise and know-how created in an academic environment into a commercially sustainable future supporting the Dutch technology landscape.
De textielindustrie is wereldwijd een van de grootste milieuvervuilers. En dat komt mede doordat er weinig kleding gerecycled wordt: slecht 1% van de 80 miljard kleidingstukken die per jaar worden geproduceerd wordt gerecycled tot vezels waar nieuwe kleding van wordt gemaakt. Dit probleem wordt momenteel stevig aangepakt in de EU: in maart 2022 zijn strenge maatregelen aangekondigd die de industrie verplichten om circulair, duurzaam en energiezuinig te produceren. Het probleem is echter dat er technisch gezien weinig goede methodes bestaan om afgekeurde textiel weer om te zetten tot nieuwe kleding. Textiel bestaat vaak uit allerlei materialen die met elkaar verweven zijn, en de technologie schiet vooral tekort in snelle, automatische herkenning van deze samenstelling. Herkenning is essentieel omdat elke samenstelling weer een ander recycleproces/sorteerstroom nodig heeft. Innovatie in herkenningssystemen wordt dan ook in de sector aangewezen als de meest belangrijke stap naar een circulaire textielindustrie, en is het kernpunt van dit consortium. In dit project wordt een innovatie methode ontwikkeld om met behulp van hyperspectrale Short-Wave Infrared (SWIR) -camera's en Artificial Intelligence (AI) de textielsamenstelling te bepalen op de lopende band. AI is hierbij een sleuteltechnologie, omdat de herkenning van textiel dermate complex is (door de grote hoeveelheid verschijningsvormen) dat conventionele analysemethoden niet volstaan. Wij hebben vier innovatieve AI-technieken geïdentificeerd die nog nooit eerder zijn toegepast op textielrecycling, die gezamenlijk naar verwachting tot een doorbraak leiden in de textielherkenning. Om deze technieken toe te kunnen passen is een grote textieldataset noodzakelijk met nauwkeurige samenstelling-informatie, die nog ontbreekt. Onze contributie is daarom drievoudig: Ten eerste bouwen we de eerste grootschalige en publiekelijk-beschikbare textieldatabase voor gezamenlijke innovatie. Ten tweede leveren wij publiekelijk-beschikbare AI-algoritmes waarmee textielherkenning uitgevoerd kan worden, en ten derde werken wij aan een prototype opstelling (TRL-6) waarbij hyperspectrale beelden van textiel op een lopende band worden opgenomen en herkend.