Using stable isotope techniques, this study shows that plasma free fatty acid oxidation is not impaired during exercise in non-obese type II diabetic patients.
DOCUMENT
This letter to the editor argues that the assumption of a single value for the acetate recovery factor in carbon-13 stable isotope research for different individuals, can lead to significant errors in the outcomes of substrate utilization measurements.
DOCUMENT
This paper descibes a study that shows that glycogen-lowering exercise, performed the evening before an exercise bout in combination with glycogen restriction leads to a reduction of the oxidation rate of ingested glucose during moderate-intensity exercise
DOCUMENT
Origin verification of timber is essential to expose origin fraud and reduce illegal timber trade. A promising forensic method for origin verification is based on stable isotope ratios in wood, but large-scale studies that test local and regional variation to apply the method at a sub-country scale are lacking.
LINK
The data of this study indicate that the acetate recovery factor, used in stable isotope research, needs to be deteremined in every subject, under similar conditions as used for the tracer-derived determination of substrate oxidation.
DOCUMENT
Introduction: The kinetics of protein oxidation, monitored in breath, and its contribution to the whole body protein status is not well established. Objectives: To analyze protein oxidation in various metabolic conditions we developed/validated a 13C-protein oxidation breath test using low enriched milk proteins. Method/Design: 30 g of naturally labeled 13C-milk proteins were consumed by young healthy volunteers. Breath samples were taken every 10 min and 13CO2 was measured by Isotope Ratio Mass Spectrometry. To calculate the amount of oxidized substrate we used: substrate dose, molecular weight and 13C enrichment of the substrate, number of carbon atoms in a substrate molecule, and estimated CO2-production of the subject based on body surface area. Results: We demonstrated that in 255 min 20% ± 3% (mean ± SD) of the milk protein was oxidized compared to 18% ± 1% of 30 g glucose. Postprandial kinetics of oxidation of whey (rapidly digestible protein) and casein (slowly digestible protein) derived from our breath test were comparable to literature data regarding the kinetics of appearance of amino acids in blood. Oxidation of milk proteins was faster than that of milk lipids (peak oxidation 120 and 290 minutes, respectively). After a 3-day protein restricted diet (~10 g of protein/day) a decrease of 31% ± 18% in milk protein oxidation was observed compared to a normal diet. Conclusions: Protein oxidation, which can be easily monitored in breath, is a significant factor in protein metabolism. With our technique we are able to characterize changes in overall protein oxidation under various meta-bolic conditions such as a protein restricted diet, which could be relevant for defining optimal protein intake under various conditions. Measuring protein oxidation in new-born might be relevant to establish its contribution to the protein status and its age-dependent development.
LINK
Postprandial high glucose and insulin responses after starchy food consumption, associated with an increased risk of developing several metabolic diseases, could possibly be improved by altering food structure. We investigated the influence of a compact food structure; different wheat products with a similar composition were created using different processing conditions. The postprandial glucose kinetics and metabolic response to bread with a compact structure (flat bread, FB) was compared to bread with a porous structure (control bread, CB) in a randomized, crossover study with ten healthy male volunteers. Pasta (PA), with a very compact structure, was used as the control. The rate of appearance of exogenous glucose (RaE), endogenous glucose production, and glucose clearance rate (GCR) was calculated using stable isotopes. Furthermore, postprandial plasma concentrations of glucose, insulin, several intestinal hormones and bile acids were analyzed. The structure of FB was considerably more compact compared to CB, as confirmed by microscopy, XRT analysis (porosity) and density measurements. Consumption of FB resulted in lower peak glucose, insulin and glucose-dependent insulinotropic polypeptide (ns) responses and a slower initial RaE compared to CB. These variables were similar to the PA response, except for RaE which remained slower over a longer period after PA consumption. Interestingly, the GCR after FB was higher than expected based on the insulin response, indicating increased insulin sensitivity or insulin-independent glucose disposal. These results demonstrate that the structure of wheat bread can influence the postprandial metabolic response, with a more compact structure being more beneficial for health. Bread-making technology should be further explored to create healthier products.
DOCUMENT
Development of novel testing strategies to detect adverse human health effects is of interest to replace in vivo-based drug and chemical safety testing. The aim of the present study was to investigate whether physiologically based kinetic (PBK) modeling-facilitated conversion of in vitro toxicity data is an adequate approach to predict in vivo cardiotoxicity in humans. To enable evaluation of predictions made, methadone was selected as the model compound, being a compound for which data on both kinetics and cardiotoxicity in humans are available. A PBK model for methadone in humans was developed and evaluated against available kinetic data presenting an adequate match. Use of the developed PBK model to convert concentration–response curves for the effect of methadone on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) in the so-called multi electrode array (MEA) assay resulted in predictions for in vivo dose–response curves for methadone-induced cardiotoxicity that matched the available in vivo data. The results also revealed differences in protein plasma binding of methadone to be a potential factor underlying variation between individuals with respect to sensitivity towards the cardiotoxic effects of methadone. The present study provides a proof-of-principle of using PBK modeling-based reverse dosimetry of in vitro data for the prediction of cardiotoxicity in humans, providing a novel testing strategy in cardiac safety studies.
DOCUMENT
Camera trap technology has galvanized the study of predator-prey ecology in wild animal communities by expanding the scale and diversity of predator-prey interactions that can be analyzed. While observational data from systematic camera arrays have informed inferences on the spatiotemporal outcomes of predator-prey interactions, the capacity for observational studies to identify mechanistic drivers of species interactions is limited. Experimental study designs that utilize camera traps uniquely allow for testing hypothesized mechanisms that drive predator and prey behavior, incorporating environmental realism not possible in the lab while benefiting from the distinct capacity of camera traps to generate large data sets from multiple species with minimal observer interference. However, such pairings of camera traps with experimental methods remain underutilized. We review recent advances in the experimental application of camera traps to investigate fundamental mechanisms underlying predator-prey ecology and present a conceptual guide for designing experimental camera trap studies. Only 9% of camera trap studies on predator-prey ecology in our review mention experimental methods, but the application of experimental approaches is increasing. To illustrate the utility of camera trap-based experiments using a case study, we propose a study design that integrates observational and experimental techniques to test a perennial question in predator-prey ecology: how prey balance foraging and safety, as formalized by the risk allocation hypothesis. We discuss applications of camera trap-based experiments to evaluate the diversity of anthropogenic influences on wildlife communities globally. Finally, we review challenges to conducting experimental camera trap studies. Experimental camera trap studies have already begun to play an important role in understanding the predator-prey ecology of free-living animals, and such methods will become increasingly critical to quantifying drivers of community interactions in a rapidly changing world. We recommend increased application of experimental methods in the study of predator and prey responses to humans, synanthropic and invasive species, and other anthropogenic disturbances.
DOCUMENT