Nowadays companies need higher educated engineers to develop their competences to enable them to innovate. This innovation competence is seen as a remedy for the minor profitable business they do during the financial crises. Innovation is an element to be developed on the one hand for big companies as well as for small-and-medium sized companies through Europe to overcome this crisis. The higher education can be seen as an institution where youngsters, coming from secondary schools, who choose to learn at higher education to realize their dream, what they like to become in the professional world. The tasks of the Universities of applied Sciences are to prepare these youngsters to become starting engineers doing their job well in the companies. Companies work for a market, trying to manufacture products which customers are willing to pay for. They ask competent employees helping achieving this goal. It is important these companies inform the Universities of applied Sciences in order to modify their educational program in such a way that the graduated engineers are learning the latest knowledge and techniques, which they need to know doing their job well. The Universities of applied Sciences of Oulu (Finland) and Fontys Eindhoven (The Netherlands) are working together to experience possibilities to qualify their students on innovation development in an international setting. In the socalled: ‘Invention Project’, students are motivated to find their own invention, to design it, to prepare this idea for prototyping and to really manufacture it. Organizing the project, special attention is given to communication protocol between students and also between teachers. Students have meetings on Thursday every week through Internet connection with the communication program OPTIMA, which is provided by the Oulu University. Not only the time difference between Finland and the Netherlands is an issue to be organized also effective protocols how to provide each other relevant information and also how to make in an effective way decisions are issues. In the paper the writers will present opinions of students, teachers and also companies in both regions of Oulu and Eindhoven on the effectiveness of this project reaching the goal students get more experienced to set up innovative projects in an international setting. The writers think this is an important and needed competence for nowadays young engineers to be able to create lucrative inventions for companies where they are going to work for. In the paper the writers also present the experiences of the supervising conditions during the project. The information found will lead to successfactors and do’s and don’ts for future projects with international collaboration.
Amsterdam Science Park (ASP) is a pearl in the crown of the Amsterdam knowledge economy, with its high-level research institutes (the Faculty of Science of the University of Amsterdam, several institutes of the NWO, the Dutch national science organisation) and a growing number of knowledge-based companies that reside in the multi-tenant Matrix buildings at the park. At ASP, the number of examples of co-creation is steadily growing. Larger tech firms (including Bosch and ASML) have located there and engage in deep collaboration with university institutes. Many more companies have expressed interest in collaborating with researchers located at ASP, not only in order to gain access to promising talent, but also to more extensively involve university researchers in their R&D processes. Another trend is the growth of science-based start-ups, now hosted at ASP’s Start-up Village: an appealing hotspot, made of sea containers. Players from business and university signal a rising need for new and more integrated concepts that facilitate collaborations between larger firms, start-ups and research groups. And also, the ASP management would like to see more co-creation. From its spatial and organisational design, the park is however characterised by a separation of activities: each faculty and institute operates its own building and facilities, with the firms hosted in the multitenant Matrix buildings. ASP is being developed along the lines of a masterplan based on strict zoning (Gemeente Amsterdam, 2013). This study explores how, and under what conditions further co-creation could be facilitated at ASP.
Particulate matter (PM) exposure, amongst others caused by emissions and industrial processes, is an important source of respiratory and cardiovascular diseases. There are situations in which blue-collar workers in roadwork companies are at risk. This study investigated perceptions of risk and mitigation of employees in roadwork (construction and maintenance) companies concerning PM, as well as their views on methods to empower safety behavior, by means of a mental models approach. We held semi-structured interviews with twenty-two employees (three safety specialists, seven site managers and twelve blue-collar workers) in three different roadwork companies. We found that most workers are aware of the existence of PM and reduction methods, but that their knowledge about PM itself appears to be fragmented and incomplete. Moreover, road workers do not protect themselves consistently against PM. To improve safety instructions, we recommend focusing on health effects, reduction methods and the rationale behind them, and keeping workers’ mental models into account. We also recommend a healthy dialogue about work-related risk within the company hierarchy, to alleviate both information-related and motivation-related safety issues. https://doi.org/10.1016/j.ssci.2019.06.043 LinkedIn: https://www.linkedin.com/in/john-bolte-0856134/