Recent advancements in mobile sensing and wearable technologies create new opportunities to improve our understanding of how people experience their environment. This understanding can inform urban design decisions. Currently, an important urban design issue is the adaptation of infrastructure to increasing cycle and e-bike use. Using data collected from 12 cyclists on a cycle highway between two municipalities in The Netherlands, we coupled location and wearable emotion data at a high spatiotemporal resolution to model and examine relationships between cyclists' emotional arousal (operationalized as skin conductance responses) and visual stimuli from the environment (operationalized as extent of visible land cover type). We specifically took a within-participants multilevel modeling approach to determine relationships between different types of viewable land cover area and emotional arousal, while controlling for speed, direction, distance to roads, and directional change. Surprisingly, our model suggests ride segments with views of larger natural, recreational, agricultural, and forested areas were more emotionally arousing for participants. Conversely, segments with views of larger developed areas were less arousing. The presented methodological framework, spatial-emotional analyses, and findings from multilevel modeling provide new opportunities for spatial, data-driven approaches to portable sensing and urban planning research. Furthermore, our findings have implications for design of infrastructure to optimize cycling experiences.
MULTIFILE
Hybrid Energy Storage System (HESS) have the potential to offer better flexibility to a grid than any single energy storage solution. However, sizing a HESS is challenging, as the required capacity, power and ramp rates for a given application are difficult to derive. This paper proposes a method for splitting a given load profile into several storage technology independent sub-profiles, such that each of the sub-profiles leads to its own requirements. This method can be used to gain preliminary insight into HESS requirements before a choice is made for specific storage technologies. To test the method, a household case is investigated using the derived methodology, and storage requirements are found, which can then be used to derive concrete storage technologies for the HESS of the household. Adding a HESS to the household case reduces the maximum import power from the connected grid by approximately 7000 W and the maximum exported power to the connected grid by approximately 1000 W. It is concluded that the method is particularly suitable for data sets with a high granularity and many data points.
MULTIFILE
The ever-increasing electrification of society has been a cause of utility grid issues in many regions around the world. With the increased adoption of electric vehicles (EVs) in the Netherlands, many new charge points (CPs) are required. A common installation practice of CPs is to group multiple CPs together on a single grid connection, the so-called charging hub. To further ensure EVs are adequately charged, various control strategies can be employed, or a stationary battery can be connected to this network. A pilot project in Amsterdam was used as a case study to validate the Python model developed in this study using the measured data. This paper presents an optimisation of the battery energy storage capacity and the grid connection capacity for such a P&R-based charging hub with various load profiles and various battery system costs. A variety of battery control strategies were simulated using both the optimal system sizing and the case study sizing. A recommendation for a control strategy is proposed.