Knowledge of the time of deposition is pivotal in forensic investigations. Recent studies show that changes in intrinsic fluorescence over time can be used to estimate the age of body fluids. These changes have been attributed to oxidative modifications caused by protein–lipid interactions. This pilot study aims to explore the impact of these modifications on body fluid fluorescence, enhancing the protein–lipid model system for age estimation. Lipid and protein oxidation markers, including protein carbonyls, dityrosine, advanced glycation end-products (AGEs), malondialdehyde (MDA), and 4-hydroxynonenal (HNE), were studied in aging semen, urine, and saliva over 21 days. Surface plasmon resonance imaging (SPRi), enzyme-linked immunosorbent assay (ELISA), and fluorescence spectroscopy were applied. Successful detection of AGE, dityrosine, MDA, and HNE occurred in semen and saliva via SPRi, while only dityrosine was detected in urine. Protein carbonyls were measured in all body fluids, but only in saliva was a significant increase observed over time. Additionally, protein fluorescence loss and fluorescent oxidation product formation were assessed, showing significant decreases in semen and saliva, but not in urine. Although optimization is needed for accurate quantification, this study reveals detectable markers for protein and lipid oxidation in aging body fluids, warranting further investigation.
MULTIFILE
Low-grade inflammation and metabolic syndrome are seen in many chronic diseases, including rheumatoid arthritis (RA) and osteoarthritis (OA). Lifestyle interventions which combine different non-pharmacological therapies have shown synergizing effects in improving outcomes in patients with other chronic diseases or increased risk thereof, especially cardiovascular disease. For RA and metabolic syndrome-associated OA (MSOA), whole food plant-based diets (WFPDs) have shown promising results. A WFPD, however, had not yet been combined with other lifestyle interventions for RA and OA patients. In this protocol paper, we therefore present Plants for Joints, a multidisciplinary lifestyle program, based on a WFPD, exercise, and stress management. The objective is to study the effect of this program on disease activity in patients with RA (randomized controlled trial [RCT] 1), on a risk score for developing RA in patients with anti-citrullinated protein antibody (ACPA) positive arthralgia (RCT 2) and on pain, stiffness, and function in patients with MSOA (RCT 3), all in comparison with usual care.We designed three 16-week observer-blind RCTs with a waiting-list control group for patients with RA with low to moderate disease activity (2.6 ≤ Disease Activity Score [DAS28] ≤ 5.1, RCT 1, n = 80), for patients at risk for RA, defined by ACPA-positive arthralgia (RCT 2, n = 16) and for patients with metabolic syndrome and OA in the knee and/or hip (RCT 3, n = 80). After personal counseling on diet and exercise, participants join 10 group meetings with 6-12 other patients to receive theoretical and practical training on a WFPD, exercise, and stress management, while medication remains unchanged. The waiting-list control group receives usual care, while entering the program after the RCT. Primary outcomes are: difference in mean change between intervention and control groups within 16 weeks for the DAS28 in RA patients (RCT 1), the RA-risk score for ACPA positive arthralgia patients (RCT 2), and the Western Ontario and McMaster Universities Arthritis Index (WOMAC) score for MSOA patients (RCT 3). Continued adherence to the lifestyle program is measured in a two-year observational extension study.
In this review, we present the growing scientific evidence showing the importance of protein and amino acid provision in nutritional support and their impact on preservation of muscle mass and patient outcomes.