This paper outlines an investigation into the updating of fatigue reliability through inspection data by means of structural correlation. The proposed methodology is based on the random nature of fatigue fracture growth and the probability of damage detection and introduces a direct link between predicted crack size and inspection results. A distinct focus is applied on opportunities for utilizing inspection information for the updating of both inspected and uninspected (or uninspectable) locations.
Objectives The aim of this study was to examine the reciprocal association between work–family conflict and depressive complaints over time. Methods Cross-lagged structural equation modeling (SEM) was used and three-wave follow-up data from the Maastricht Cohort Study with six years of follow-up [2416 men and 585 women at T1 (2008)]. Work–family conflict was operationalized by distinguishing both work–home interference and home–work interference, as assessed with two subscales of the Survey Work–Home Interference Nijmegen. Depressive complaints were assessed with a subscale of the Hospital Anxiety and Depression scale. Results The results showed a positive cross-lagged relation between home–work interference and depressive complaints. The results of the χ 2 difference test indicated that the model with cross-lagged reciprocal relationships resulted in a significantly better fit to the data compared to the causal (Δχ 2 (2)=9.89, P=0.001), reversed causation model (Δχ 2 (2)=9.25, P=0.01), and the starting model (Δχ 2 (4)=16.34, P=0.002). For work–home interference and depressive complaints, the starting model with no cross-lagged associations over time had the best fit to the empirical data. Conclusions The findings suggest a reciprocal association between home–work interference and depressive complaints since the concepts appear to affect each other mutually across time. This highlights the importance of targeting modifiable risk factors in the etiology of both home–work interference and depressive complaints when designing preventive measures since the two concepts may potentiate each other over time.
The improvement of passive fire protection of storage vessels is a key factor to enhance safety among the LPG distribution chain. A thermal and mechanical model based on finite elements simulations was developed to assess the behaviour of full size tanks used for LPG storage and transportation in fire engulfment scenarios. The model was validated by experimental results. A specific analysis of the performance of four different reference coating materials was then carried out, also defining specific key performance indicators (KPIs) to assess design safety margins in near-miss simulations. The results confirmed the wide influence of coating application on the expected vessel time to failure due to fire engulfment. Aquite different performance of the alternative coating materialswas evidenced. General correlationswere developed among the vessel time to failure and the effective coating thickness in full engulfment scenarios, providing a preliminary assessment of the coating thickness required to prevent tank rupture for a given time lapse. The KPIs defined allowed the assessment of the available safety margins in the reference scenarios analyzed and of the robustness of thermal protection design.
MULTIFILE