In order to guarantee structural integrity of marine structures in an effective way, operators of these structures seek an affordable, simple and robust system for monitoring detected cracks. Such systems are not yet available and the authors took a challenge to research a possibility of developing such a system. The paper describes the initial research steps made. In the first place, this includes reviewing conventional and recent methods for sensing and monitoring fatigue cracks and discussing their applicability for marine structures. A special attention is given to the promising but still developing new sensing techniques. In the second place, wireless network systems are reviewed because they form an attractive component of the desired system. The authors conclude that it is feasible to develop the monitoring system for detected cracks in marine structures and elaborate on implications of availability of such a system on risk based inspections and structural health monitoring systems
DOCUMENT
This manual focuses on the initial phase of a (digital) publishing process. It offers methods to critically examine the narrative structures of content and explore alternative conceptions of a publication. By raising the question of how modular publishing can be used as a way to create, edit and structure content it tries to resist a monolithic story line, and embraces multiple perspectives.
DOCUMENT
Several studies show that logistics facilities have spread spatially from relatively concentrated clusters in the 1970s to geographically more decentralized patterns away from urban areas. The literature indicates that logistics costs are one of the major influences on changes in distribution structures, or locations and usage of logistics facilities. Quantitative modelling studies that aim to describe or predict these phenomena in relation to logistics costs are lacking, however. This is relevant to design more effective policies concerning spatial development, transport and infrastructure investments as well as for understanding environmental consequences of freight transport. The objective of this paper is to gain an understanding of the responsiveness of spatial logistics patterns to changes in these costs, using a quantitative model that links production and consumption points via distribution centers. The model is estimated to reproduce observed use of logistics facilities as well as related transport flows, for the case of the Netherlands. We apply the model to estimate the impacts of a number of scenarios on the spatial spreading of regional distribution activity, interregional vehicle movements and commodity flows. We estimate new cost elasticities, of the demand for trade and transport together, as well as specifically for the demand for the distribution facility services. The relatively low cost elasticity of transport services and high cost elasticity for the distribution services provide new insights for policy makers, relevant to understand the possible impacts of their policies on land use and freight flows.
DOCUMENT
As the Dutch population is aging, the field of music-in-healthcare keeps expanding. Healthcare, institutionally and at home, is multiprofessional and demands interprofessional collaboration. Musicians are sought-after collaborators in social and healthcare fields, yet lesser-known agents of this multiprofessional group. Although live music supports social-emotional wellbeing and vitality, and nurtures compassionate care delivery, interprofessional collaboration between musicians, social work, and healthcare professionals remains marginal. This limits optimising and integrating music-making in the care. A significant part of this problem is a lack of collaborative transdisciplinary education for music, social, and healthcare students that deep-dives into the development of interprofessional skills. To meet the growing demand for musical collaborations by particularly elderly care organisations, and to innovate musical contributions to the quality of social and healthcare in Northern Netherlands, a transdisciplinary education for music, physiotherapy, and social work studies is needed. This project aims to equip multiprofessional student groups of Hanze with interprofessional skills through co-creative transdisciplinary learning aimed at innovating and improving musical collaborative approaches for working with vulnerable, often older people. The education builds upon experiential learning in Learning LABs, and collaborative project work in real-life care settings, supported by transdisciplinary community forming.The expected outcomes include a new concept of a transdisciplinary education for HBO-curricula, concrete building blocks for a transdisciplinary arts-in-health minor study, innovative student-led approaches for supporting the care and wellbeing of (older) vulnerable people, enhanced integration of musicians in interprofessional care teams, and new interprofessional structures for educational collaboration between music, social work and healthcare faculties.
Deze subsidieaanvraag richt zich op het onderzoeken van de hergebruikmogelijkheden van structuren van incourante kantoorgebouwen. Grofweg 10% van alle leegstaande kantoorgebouwen is incourant. De structuren van deze gebouwen (de constructies) zijn echter meestal niet incourant en in de meeste gevallen technisch niet verouderd. Deze structuren kunnen worden ingezet als dragers voor nieuwe ontwikkelingen die aansluiten op de groeiambities van de metropoolregio Amsterdam. Op deze manier kan de levenscyclus van deze structuren worden verlengd en kunnen de grondstofstromen voor constructiematerialen worden gereduceerd. Het werkveld geeft aan behoefte te hebben aan gedetailleerde technische gegevens over deze structuren en gedetailleerd inzicht in functiemogelijkheden om op basis daarvan scenario’s te ontwikkelen om tot verdienmodellen te komen. In samenwerking met ABT en ABC Nova wordt voor 15 casestudies binnen de metropoolregio Amsterdam de structuur geïnventariseerd. Vervolgens worden voor deze gebouwen de functiemogelijkheden onderzocht. Dit project leidt tot gedetailleerde kennis over bestaande structuren en vormt daarmee de eerste stap in een te ontwikkelen 4D structurenatlas met functiemogelijkheden. De beoogde uitkomsten kunnen dienen als randvoorwaarden voor vervolgonderzoek naar een groter aantal te onderzoeken structuren en functiemogelijkheden. Ook kan naar aanleiding hiervan worden ingezoomd op specifieke constructietypen en functies.
Many lithographically created optical components, such as photonic crystals, require the creation of periodically repeated structures [1]. The optical properties depend critically on the consistency of the shape and periodicity of the repeated structure. At the same time, the structure and its period may be similar to, or substantially below that of the optical diffraction limit, making inspection with optical microscopy difficult. Inspection tools must be able to scan an entire wafer (300 mm diameter), and identify wafers that fail to meet specifications rapidly. However, high resolution, and high throughput are often difficult to achieve simultaneously, and a compromise must be made. TeraNova is developing an optical inspection tool that can rapidly image features on wafers. Their product relies on (a) knowledge of what the features should be, and (b) a detailed and accurate model of light diffraction from the wafer surface. This combination allows deviations from features to be identified by modifying the model of the surface features until the calculated diffraction pattern matches the observed pattern. This form of microscopy—known as Fourier microscopy—has the potential to be very rapid and highly accurate. However, the solver, which calculates the wafer features from the diffraction pattern, must be very rapid and precise. To achieve this, a hardware solver will be implemented. The hardware solver must be combined with mechatronic tracking of the absolute wafer position, requiring the automatic identification of fiduciary markers. Finally, the problem of computer obsolescence in instrumentation (resulting in security weaknesses) will also be addressed by combining the digital hardware and software into a system-on-a-chip (SoC) to provide a powerful, yet secure operating environment for the microscope software.