An extensive inventory of 137 Dutch SMEs regarding the most important considerations regarding the use of emerging digital technologies shows that the selection process is difficult. En trepreneurs wonder which AI application suits them best and what the added (innovative) value is and how they can implement it. This outcome is a clear signal from SMEs to researchers in knowledge institutions and to developers of AI services and applications: Help! Which AI should I choose? With a consortium of students, researchers, and SMEs, we are creating an approach that will help SMEs make the most suitable AI choice. The project develops a data-driven advisory tool that helps SMEs choose, develop, implement and use AI applications focusing on four highly ranked topics.
LINK
How can university and city administration co-create the city? Where do their interests meet and diverge, and what is needed to exploit synergies? This report explores the potential for co-creation in five domains: urban economic development, internationalisation, urban attractiveness & city branding, science & society, and student life. We provide numerous examples from the 10 medium-sized European cities that participated in the EUniverCities project (URBACT). But also we discuss pitfalls and dilemmas. This publication is the final report of the project, synthesizing the main results and findings.
In this PhD thesis, we aimed to improve understanding of the study progression and success of autistic students in higher education by comparing them to students with other disabilities and students without disabilities. We studied their background and enrollment characteristics, whether barriers in progression existed, how and when possible barriers manifested themselves in their student journey, and how institutions should address these issues. We found autistic students to be different from their peers but not worse as expected based on existing findings. We expect we counterbalanced differences because we studied a large data set spanning seven cohorts and performed propensity score weighting. Most characteristics of autistic students at enrollment were similar to those of other students, but they were older and more often male. They more often followed an irregular path to higher education than students without disabilities. They expected to study full time and spend no time on extracurricular activities or paid work. They expected to need more support and were at a higher risk of comorbidity than students with other disabilities. We found no difficulties with participation in preparatory activities. Over the first bachelor year, the grade point averages (GPAs) of autistic students were most similar to the GPAs of students without disabilities. Credit accumulation was generally similar except for one of seven periods, and dropout rates revealed no differences. The number of failed examinations and no-shows among autistic students was higher at the end of the first semester. Regarding progression and degree completion, we showed that most outcomes (GPAs, dropout rates, resits, credits, and degree completion) were similar in all three groups. Autistic students had more no-shows in the second year than their peers, which affected degree completion after three years. Our analysis of student success prediction clarified what factors predicted their success or lack thereof for each year in their bachelor program. For first-year success, study choice issues were the most important predictors (parallel programs and application timing). Issues with participation in pre-education (absence of grades in pre-educational records) and delays at the beginning of autistic students’ studies (reflected in age) were the most influential predictors of second-year success and delays in the second and final year of their bachelor program. Additionally, academic performance (average grades) was the strongest predictor of degree completion within three years. Our research contributes to increasing equality of opportunities and the development of support in higher education in three ways. First, it provides insights into the extent to which higher education serves the equality of autistic students. Second, it clarifies which differences higher education must accommodate to support the success of autistic students during their student journey. Finally, we used the insights into autistic students’ success to develop a stepped, personalized approach to support their diverse needs and talents, which can be applied using existing offerings.
LINK
Organ-on-a-chip technology holds great promise to revolutionize pharmaceutical drug discovery and development which nowadays is a tremendously expensive and inefficient process. It will enable faster, cheaper, physiologically relevant, and more reliable (standardized) assays for biomedical science and drug testing. In particular, it is anticipated that organ-on-a-chip technology can substantially replace animal drug testing with using the by far better models of true human cells. Despite this great potential and progress in the field, the technology still lacks standardized protocols and robust chip devices, which are absolutely needed for this technology to bring the abovementioned potential to fruition. Of particular interest is heart-on-a-chip for drug and cardiotoxicity screening. There is presently no preclinical test system predicting the most important features of cardiac safety accurately and cost-effectively. The main goal of this project is to fabricate standardized, robust generic heart-on-a-chip demonstrator devices that will be validated and further optimized to generate new physiologically relevant models to study cardiotoxicity in vitro. To achieve this goal various aspects will be considered, including (i) the search for alternative chip materials to replace PDMS, (ii) inner chip surface modification and treatment (chemistry and topology), (iii) achieving 2D/3D cardiomyocyte (long term) cell culture and cellular alignment within the chip device, (iv) the possibility of integrating in-line sensors in the devices and, finally, (v) the overall chip design. The achieved standardized heart-on-a-chip technology will be adopted by pharmaceutical industry. This proposed project offers a unique opportunity for the Netherlands, and Twente in particular, which has relevant expertise, potential, and future perspective in this field as it hosts world-leading companies pioneering various core aspects of the technology that are relevant for organs-on-chips, combined with two world-leading research institutes within the University of Twente.
Dit project heeft als hoofddoel het ontwikkelen en testen van een laagdrempelige prototype toolset waarmee tentoonstellingen - zonder ingewikkelde technologie - virtueel kunnen worden ge(re)construeerd. Tentoonstellingen hebben een beperkte levensduur. Veel informatie die de beleving van een expositie bepaalt, is na afloop verloren. Met name geldt dit voor inrichting en vormgevingsaspecten, die zeer bepalend zijn voor de beleving. Virtual Reality (VR) biedt mogelijkheden om deze informatie te reconstrueren en te behouden en de bezoeker een impressie te geven van de ‘look-and-feel’ van een expositie. Op deze manier kunnen musea hun geschiedenis op aansprekende wijze archiveren en succesvolle of baanbrekende tentoonstellingen uit hun verleden opnieuw toegankelijk maken. De VR ruimtes bieden ook mogelijkheden voor innovatief onderzoek en onderwijs en voor het ontwerpen en presenteren van nieuwe tentoonstellingen. Hiertoe zal een koppeling naar bestaande digitale beeldarchieven worden onderzocht, om een dynamische link tussen online databases en virtuele ruimtes tot stand te brengen. De potentie van de toolset en het concept van de virtueel gereconstrueerde tentoonstelling zal worden onderzocht aan de hand van een pilot met een vanuit Theaterwetenschappen ingebrachte casus: de spraakmakende, allereerste Internationale Theatertentoonstelling in het Stedelijk Museum (Amsterdam, 1922). De virtuele reconstructie van deze tentoonstelling en de toolset die hiervoor zal worden ontwikkeld zullen uitgebreid worden geëvalueerd met conservatoren, onderzoekers, studenten en tentoonstellingsontwerpers. De pilot zal derhalve leiden tot een reflectie op de toepassingsmogelijkheden van VR in de museale wereld, een demonstrator produceren van VR als archiveringsinstrument, en een prototype vormen dat doorontwikkeld kan worden in een vruchtbare publiek-private-academische samenwerking.
The Water Framework Directive imposes challenges regarding the environmental risk of plastic pollution. The quantification, qualification, monitoring, and risk assessment of nanoplastics and small microplastic (<20 µm) is crucial. Environmental nano- and micro-plastics (NMPs) are highly diverse, accounting for this diversity poses a big challenge in developing a comprehensive understanding of NMPs detection, quantification, fate, and risks. Two major issues currently limit progress within this field: (a) validation and broadening the current analytical tools (b) uncertainty with respect to NMPs occurrence and behaviour at small scales (< 20 micron). Tracking NMPs in environmental systems is currently limited to micron size plastics due to the size detection limit of the available analytical techniques. There are currently no methods that can detect nanoplastics in real environmental systems. A major bottleneck is the incompatibility between commercially available NMPs and those generated from plastic fragments degradation in the environment. To track nanoplastics in environmental and biological systems, some research groups synthesized metal-doped nanoplastics, often limited to one polymer type and using high concentrations of surfactants, rendering these synthesized nanoplastics to not be representative of nanoplatics found in real environment. NanoManu proposes using Electrohydrodynamic Atomization to generate metal doped NMPs of different polymers types, sizes, and shapes, which will be representative of the real environmental nanoplastics. The synthesized nanoplastics will be used as model particles in environmental studies. The synthesized nanoplastics will be characterized and tested using different analytical methods, e.g., SEM-EDX, TEX, GCpyrMS, FFF, µFTIR and SP-ICP-MS. NanoManu is a first and critical step towards generating a comprehensive state-of-the-art analytical and environmental knowledge on the environmental fate and risks of nanoplastics. This knowledge impacts current risk assessment tools, efficient interventions to limit emissions and adequate regulations related to NMPs.