The purpose of this study was to assess predictive value of a new submaximal rowing test (SmRT) on 2,000-m ergometer rowing time-trial performance in competitive rowers. In addition, the reliability of the SmRT was investigated. Twenty-four competitive male rowers participated in this study. After determining individual HRmax, all rowers performed an SmRT followed by a 2,000-m rowing ergometer time trial. In addition, the SmRT was performed 4 times (2 days in between) to determine the reliability. The SmRT consists of two 6-minute stages of rowing at 70 and 80% HRmax, followed by a 3-minute stage at 90% HRmax. Power was captured during the 3 stages, and 60 seconds of heart rate recovery (HRR60s) was measured directly after the third stage. Results showed that predictive value of power during the SmRT on 2,000-m rowing time also increased with stages. CVTEE% is 2.4, 1.9, and 1.3%. Pearson correlations (95% confidence interval [95% CI]) were −0.73 (−0.88 to −0.45), −0.80 (−0.94 to −0.67), and −0.93 (−0.97 to −0.84). 2,000-m rowing time and HRR60s showed no relationship. Reliability of power during the SmRT improved with the increasing intensity of the stages. The coefficient of variation (CVTEM%) was 9.2, 5.6, and 0.4%. Intraclass correlation coefficients (ICC) and 95% CI were 0.91 (0.78–0.97), 0.92 (0.81–0.97), and 0.99 (0.97–1.00). The CVTEM% and ICC of HRR60s were 8.1% and 0.93 (0.82–0.98). In conclusion, the data of this study shows that the SmRT is a reliable test that it is able to accurately predict 2,000-m rowing time on an ergometer. The SmRT is a practical and valuable submaximal test for rowers, which can potentially assist with monitoring, fine-tuning and optimizing training prescription in rowers.
LINK
OBJECTIVE: To examine the use of a submaximal exercise test in detecting change in fitness level after a physical training program, and to investigate the correlation of outcomes as measured submaximally or maximally.DESIGN: A prospective study in which exercise testing was performed before and after training intervention.SETTING: Academic and general hospital and rehabilitation center.PARTICIPANTS: Cancer survivors (N=147) (all cancer types, medical treatment completed > or =3 mo ago) attended a 12-week supervised exercise program.INTERVENTIONS: A 12-week training program including aerobic training, strength training, and group sport.MAIN OUTCOME MEASURES: Outcome measures were changes in peak oxygen uptake (Vo(2)peak) and peak power output (both determined during exhaustive exercise testing) and submaximal heart rate (determined during submaximal testing at a fixed workload).RESULTS: The Vo(2)peak and peak power output increased and the submaximal heart rate decreased significantly from baseline to postintervention (P<.001). Changes in submaximal heart rate were only weakly correlated with changes in Vo(2)peak and peak power output. Comparing the participants performing submaximal testing with a heart rate less than 140 beats per minute (bpm) versus the participants achieving a heart rate of 140 bpm or higher showed that changes in submaximal heart rate in the group cycling with moderate to high intensity (ie, heart rate > or =140 bpm) were clearly related to changes in VO(2)peak and peak power output.CONCLUSIONS: For the monitoring of training progress in daily clinical practice, changes in heart rate at a fixed submaximal workload that requires a heart rate greater than 140 bpm may serve as an alternative to an exhaustive exercise test.
DOCUMENT
The aim of the present study was to find early markers for overreaching that are applicable in sport practice. In a group of elite soccer players aged 15–18, the stress–recovery balance and reaction times before and after exercise were assessed. Overreaching was indicated by an elevated submaximal heart rate during a sport-specific field test. Submaximal changes in heart rate were prospectively monitored by means of monthly Interval Shuttle Run Tests during two competitive seasons. Out of 94 players, seven players with an elevated heart rate of at least one month could be included in the study, together with seven controls, matched for age, body composition, training and performance level. The stress–recovery balance was assessed with the Dutch version of the Recovery Stress Questionnaire (RESTQ-Sport). The soccer players with an elevated heart rate reported a disturbed stress–recovery balance (Mann–Whitney test, P<0.05). An ANOVA for repeated measures of reaction times revealed a significant main effect of time (F 1,12=13.87, P<0.01) indicating an improvement of psychomotor speed. No differences between groups were found. We conclude that soccer players with an elevated submaximal heart rate of at least one month share a disturbed stress–recovery balance, but they could not be distinguished from controls based on reaction time after strenuous exercise.
LINK
From an evidence-based perspective, cardiopulmonary exercise testing (CPX) is a well-supported assessment technique in both the United States (US) and Europe. The combination of standard exercise testing (ET) (ie, progressive exercise provocation in association with serial electrocardiograms [ECG], hemodynamics, oxygen saturation, and subjective symptoms) and measurement of ventilatory gas exchange amounts to a superior method to: 1) accurately quantify cardiorespiratory fitness (CRF), 2) delineate the physiologic system(s) underlying exercise responses, which can be applied as a means to identify the exercise-limiting pathophysiologic mechanism(s) and/or performance differences, and 3) formulate function-based prognostic stratification. Cardiopulmonary ET certainly carries an additional cost as well as competency requirements and is not an essential component of evaluation in all patient populations. However, there are several conditions of confirmed, suspected, or unknown etiology where the data gained from this form of ET is highly valuable in terms of clinical decision making
DOCUMENT
Standard SARS-CoV-2 testing protocols using nasopharyngeal/throat (NP/T) swabs are invasive and require trained medical staff for reliable sampling. In addition, it has been shown that PCR is more sensitive as compared to antigen-based tests. Here we describe the analytical and clinical evaluation of our in-house RNA extraction-free saliva-based molecular assay for the detection of SARS-CoV-2. Analytical sensitivity of the test was equal to the sensitivity obtained in other Dutch diagnostic laboratories that process NP/T swabs. In this study, 955 individuals participated and provided NP/T swabs for routine molecular analysis (with RNA extraction) and saliva for comparison. Our RT-qPCR resulted in a sensitivity of 82,86% and a specificity of 98,94% compared to the gold standard. A false-negative ratio of 1,9% was found. The SARS-CoV-2 detection workflow described here enables easy, economical, and reliable saliva processing, useful for repeated testing of individuals.
LINK
From an evidence-based perspective, cardiopulmonary exercise testing (CPX) is a well-supported assessment technique in both the United States (US) and Europe. The combination of standard exercise testing (ET) [i.e. progressive exercise provocation in association with serial electrocardiograms (ECGs), haemodynamics, oxygen saturation, and subjective symptoms] and measurement of ventilatory gas exchange amounts to a superior method to: (i) accurately quantify cardiorespiratory fitness (CRF), (ii) delineate the physiologic system(s) underlying exercise responses, which can be applied as a means to identify the exercise-limiting pathophysiological mechanism(s) and/or performance differences, and (iii) formulate function-based prognostic stratification. Cardiopulmonary ET certainly carries an additional cost as well as competency requirements and is not an essential component of evaluation in all patient populations. However, there are several conditions of confirmed, suspected, or unknown aetiology where the data gained from this form of ET is highly valuable in terms of clinical decision making.1
DOCUMENT
This systematic review aims to get insight into the feasibility of cardiopulmonary exercise testing (CPET) in patients with cancer prior to a physical exercise programme. We will focus on quality (defined as the adherence to international guidelines for methods of CPET) and safety of CPET. Furthermore, we compare the peak oxygen uptake (V̇O2peak) values of patients with cancer with reference values for healthy persons to put these values into a clinical perspective. A computer aided search with ‘cardiopulmonary exercise testing’ and ‘cancer’ using MEDLINE, EMBASE, Pedro, CINAHL® and SPORTDiscus™ was carried out. We included studies in which CPET with continuous gas exchange analysis has been performed prior to a physical exercise programme in adults with cancer. Twenty studies describing 1158 patients were eligible. Reported adherence to international recommendations for CPET varied per item. In most studies, the methods of CPET were not reported in detail. Adverse events occurred in 1% of patients. The percentage V̇O2peak of reference values for healthy persons varied between 65% and 89% for tests before treatment, between 74% and 96% for tests during treatment and between 52% and 117% for tests after treatment. Our results suggest that CPET is feasible and seems to be safe for patients with cancer prior to a physical exercise programme. We recommend that standard reporting and quality guidelines should be followed for CPET methods. The decreased V̇O2peak values of patients with cancer indicate that physical exercise should be implemented in their standard care.
DOCUMENT
The six-minute walk test (6MWT) is a self-paced, submaximal exercise test used to assess functional exercise capacity in patients with chronic diseases (Chang 2006, Solway et al 2001). It has been used widely in adults, and is being utilised increasingly in paediatric populations; it has been used as an estimate of physical fitness in, for example, children with severe cardiopulmonary disease, cystic fibrosis, and juvenile idiopathic arthritis (Hassan et al 2010).
DOCUMENT
Objective: To systematically review and critically appraise the literature on measurement properties of cardiopulmonary exercise test protocols for measuring aerobic capacity, VO2max, in persons after stroke. Data sources: PubMed, Embase and Cinahl were searched from inception up to 15 June 2016. A total of 9 studies were identified reporting on 9 different cardiopulmonary exercise test protocols. Study selection: VO2max measured with cardiopulmonary exercise test and open spirometry was the construct of interest. The target population was adult persons after stroke. We included all studies that evaluated reliability, measurement error, criterion validity, content validity, hypothesis testing and/ or responsiveness of cardiopulmonary exercise test protocols. Data extraction: Two researchers independently screened the literature, assessed methodological quality using the COnsensus-based Standards for the selection of health Measurement INstruments checklist and extracted data on measurement properties of cardiopulmonary exercise test protocols. Data synthesis: Most studies reported on only one measurement property. Best-evidence synthesis was derived taking into account the methodological quality of the studies, the results and the consistency of the results. Conclusion: No judgement could be made on which protocol is “best” for measuring VO2max in persons after stroke due to lack of high-quality studies on the measurement properties of the cardiopulmonary exercise test.
DOCUMENT
Physical and psychosocial stress and recovery are important performance determinants. A holistic approach that monitors these performance determinants over a longer period of time is lacking. Therefore this study aims to investigate the effect of a player’s physical and psychosocial stress and recovery on field-test performance. In a prospective non-experimental cohort design 10 female Dutch floorball players were monitored over 6 months. To monitor physical and psychosocial stress and recovery, daily training-logs and three-weekly the Recovery-Stress Questionnaire for Athletes (RESTQ-Sport) were filled out respectively. To determine field-test performance 6 Heart rate Interval Monitoring System (HIMS) and 4 Repeated Modified Agility T-test (RMAT) measurements were performed. Multilevel prediction models were applied to account for within-players and between-players field-test performance changes. The results show that more psychosocial stress and less psychosocial recovery over 3 to 6 weeks before testing decrease HIMS performance (p≤0.05). More physical stress over 6 weeks before testing improves RMAT performance (p≤0.05). In conclusion, physical and psychosocial stress and recovery affect submaximal interval-based running performance and agility up to 6 weeks before testing. Therefore both physical and psychosocial stress and recovery should be monitored in daily routines to optimize performance.
LINK