Individuals with autism increasingly enroll in universities, but little is known about predictors for their success. This study developed predictive models for the academic success of autistic bachelor students (N=101) in comparison to students with other health conditions (N=2465) and students with no health conditions (N=25,077). We applied propensity score weighting to balance outcomes. The research showed that autistic students’ academic success was predictable, and these predictions were more accurate than predictions of their peers’ success. For first-year success, study choice issues were the most important predictors (parallel program and application timing). Issues with participation in pre-education (missingness of grades in pre-educational records) and delays at the beginning of autistic students’ studies (reflected in age) were the most influential predictors for the second-year success and delays in the second and final year of their bachelor’s program. In addition, academic performance (average grades) was the strongest predictor for degree completion in 3 years. These insights can enable universities to develop tailored support for autistic students. Using early warning signals from administrative data, institutions can lower dropout risk and increase degree completion for autistic students.
By using information technology, local governments can develop alternative forms of citizen engagement. Civic crowdfunding campaigns supported by online platforms enable citizens to participate financially in social projects and can be matched with government funding. As such, an alternative for subsidies seems to be developing. In this paper, we assess empirically the success of civic crowdfunding campaigns in the Netherlands by using data collected during 2018 from 269 civic crowdfunding projects and local demographic data from the neighborhoods of these projects. The factors—the use of match-funding, the target amount of money, and the theme of the project, as well as the age structure, the province, and the degree of urbanization of the neighborhood of the civic crowdfunding project—turn out to be empirically related to the success of a civic crowdfunding campaign.
The research on student attrition, retention and success in the Netherlands is highly influenced by Tinto’s integration theory. In this paper, as part of my broader PhD research, I propose adjusting this theory to achieve a better fit with the present generation of students in the developed world. By measuring the best predictive variables of Tinto’s theory at an ordinal level it also fits better with the evaluation forms used in Dutch Institutes of Higher education. In contemporary society social media plays a crucial role and thus also in the lives of students. Earlier research has been inconclusive about the effectof social media on students’ success, however, as it has focused on the quantitative rather than the qualitative aspects of social media use. In line with the above-mentioned pedagogical theory and using insights from recent studies on students’ social media use, I test the influence of various factors as well as the use of social media on student success. This paper provides insight into the potential uses of social media in education – especially by students outside of the classroom.
Energy transition is key to achieving a sustainable future. In this transition, an often neglected pillar is raising awareness and educating youth on the benefits, complexities, and urgency of renewable energy supply and energy efficiency. The Master Energy for Society, and particularly the course “Society in Transition”, aims at providing a first overview on the urgency and complexities of the energy transition. However, educating on the energy transition brings challenges: it is a complex topic to understand for students, especially when they have diverse backgrounds. In the last years we have seen a growing interest in the use of gamification approaches in higher institutions. While most practices have been related to digital gaming approaches, there is a new trend: escape rooms. The intended output and proposed innovation is therefore the development and application of an escape room on energy transition to increase knowledge and raise motivation among our students by addressing both hard and soft skills in an innovative and original way. This project is interdisciplinary, multi-disciplinary and transdisciplinary due to the complexity of the topic; it consists of three different stages, including evaluation, and requires the involvement of students and colleagues from the master program. We are confident that this proposed innovation can lead to an improvement, based on relevant literature and previous experiences in other institutions, and has the potential to be successfully implemented in other higher education institutions in The Netherlands.
Carboxylated cellulose is an important product on the market, and one of the most well-known examples is carboxymethylcellulose (CMC). However, CMC is prepared by modification of cellulose with the extremely hazardous compound monochloracetic acid. In this project, we want to make a carboxylated cellulose that is a functional equivalent for CMC using a greener process with renewable raw materials derived from levulinic acid. Processes to achieve cellulose with a low and a high carboxylation degree will be designed.
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.