Food security depends on a network of actors and elements working together to produce and deliver healthy, sustainable, varied, safe and plentiful food supply to society. The interactions between these actors and elements must be designed, managed and optimized to satisfy demand. In this chapter we introduce Food Supply Chain Optimization and Demand, providing a framework to understand and improve food security from an operational and strategic point of view.
Since the first release of modern electric vehicles, researchers and policy makers have shown interest in the deployment and utilization of charging infrastructure. Despite the sheer volume of literature, limited attention has been paid to the characteristics and variance of charging behavior of EV users. In this research, we answer the question: which scientific approaches can help us to understand the dynamics of charging behavior in charging infrastructures, in order to provide recommendations regarding a more effective deployment and utilization of these infrastructures. To do so, we propose a conceptual model for charging infrastructure as a social supply–demand system and apply complex system properties. Using this conceptual model, we estimate the rate complexity, using three developed ratios that relate to the (1) necessity of sharing resources, (2) probabilities of queuing, and (3) cascading impact of transactions on others. Based on a qualitative assessment of these ratios, we propose that public charging infrastructure can be characterized as a complex system. Based on our findings, we provide four recommendations to policy makers for taking efforts to reduce complexity during deployment and measure interactions between EV users using systemic metrics. We further point researchers and policy makers to agent-based simulation models that capture interactions between EV users and the use complex network analysis to reveal weak spots in charging networks or compare the charging infrastructure layouts of across cities worldwide.
From the article: "Abstract Maintenance processes of Dutch housing associations are often still organized in a traditional manner. Contracts are based on lowest price instead of ‘best quality for lowest price’ considering users’ demands. Dutch housing associations acknowledge the need to improve their maintenance processes in order to lower maintenance cost, but are not sure how. In this research, this problem is addressed by investigating different supply chain partnering principles and the role of information management. The main question is “How can the organisation of maintenance processes of Dutch housing associations, in different supply chain partnering principles and the related information management, be improved?” The answer is sought through case study research."
The COVID19 pandemic highlighted the vulnerability in supply chain networks in the healthcare sector and the tremendous waste problem of disposable healthcare products, such as isolation gowns. Single-use disposable isolation gowns cause great ecological impact. Reusable gowns can potentially reduce climate impacts and improve the resilience of healthcare systems by ensuring a steady supply in times of high demand. However, scaling reusable, circular isolation gowns in healthcare organizations is not straightforward. It is impeded by economic barriers – such as servicing costs for each use – and logistic and hygiene barriers, as processes for transport, storage and safety need to be (re)designed. Healthcare professionals (e.g. purchasing managers) lack complete information about social, economic and ecological costs, the true cost of products, to make informed circular purchasing decisions. Additionally, the residual value of materials recovered from circular products is overlooked and should be factored into purchasing decisions. To facilitate the transition to circular procurement in healthcare, purchasing managers need more fine-grained, dynamic information on true costs. Our RAAK Publiek proposal (MODLI) addresses a problem that purchasing managers face – making purchasing decisions that factor in social, economic and ecological costs and future benefits from recovered materials. Building on an existing consortium that developed a reusable and recyclable isolation gown, we design and develop an open-source decision-support tool to inform circular procurement in healthcare organizations and simulate various purchasing options of non-circular and circular products, including products from circular cascades. Circular procurement is considered a key driver in the transition to a circular economy as it contributes to closing energy and material loops and minimizes negative impacts and waste throughout entire product lifecycles. MODLI aims to support circular procurement policies in healthcare organizations by providing dynamic information for circular procurement decision making.
Climate change has impacted our planet ecosystem(s) in many ways. Among other alterations, the predominance of long(er) drought periods became a point of concern for many countries. A good example is The Netherlands, a country known by its channels and abundant surface water, which has listed “drought effect mitigation” among the different topics in the last version of its “Innovation Agenda” (Kennis en Innovatie Agenda, KIA). There are many challenges to tackle in such scenario, one of them is solutions for small/decentralized communities that suffer from dry-up of surface reservoirs and have no groundwater source available. Such sites are normally far from big cities and coastal zones, which impair the supply via distribution networks. In such cases, Atmospheric Water Generation (AWG) technologies are a plausible solution. These systems have relatively small production rates (few m3 per day), but they can still provide enough volume for cities with up to 100k inhabitants. Despite having real scale systems already installed in different locations worldwide, most systems are between TRL 5 and 6. Thus need further development. SunCET proposes an in-situ evaluation of an AWG system (WaterWin) developed by two different Dutch companies (Solaq and Sustainable Eyes) in the Brazilian semi-arid state of Ceará. The cooperation with NHL Stenden will provide the necessary expertise, analytical and technical support to conduct the tests. The state government of Ceará built an infrastructure to support the realization of in-situ tests, as they want to further accelerate technology implementation in the state. Such structure will make it possible to share costs and decrease total investments for the SMEs. Finally, it is also intended to help establishing partnerships between Dutch SMEs and Brazilian end users, i.e. municipalities of the Ceará state and small agriculture companies in the region.